...
首页> 外文期刊>Atmospheric chemistry and physics >Oxidation of low-molecular-weight organic compounds in cloud droplets: global impact on tropospheric oxidants
【24h】

Oxidation of low-molecular-weight organic compounds in cloud droplets: global impact on tropospheric oxidants

机译:云液滴中低分子量有机化合物的氧化:对流层氧化剂的全局影响

获取原文
   

获取外文期刊封面封底 >>

       

摘要

In liquid cloud droplets, superoxide anion ( O 2 ( aq ) - ) is known to quickly consume ozone ( O 3(aq) ), which is relatively insoluble. The significance of this reaction as a tropospheric O 3 sink is sensitive to the abundance of O 2 ( aq ) - and therefore to the production of its main precursor, the hydroperoxyl radical ( HO 2(aq) ). The aqueous-phase oxidation of oxygenated volatile organic compounds (OVOCs) is the major source of HO 2(aq) in cloud droplets. Hence, the lack of explicit aqueous-phase chemical kinetics in global atmospheric models leads to a general underestimation of clouds as O 3 sinks. In this study, the importance of in-cloud OVOC oxidation for tropospheric composition is assessed by using the Chemistry As A Boxmodel Application (CAABA) and the global ECHAM/MESSy Atmospheric Chemistry (EMAC) model, which are both capable of explicitly representing the relevant chemical transformations. For this analysis, three different in-cloud oxidation mechanisms are employed: (1) one including the basic oxidation of SO 2(aq) by O 3(aq) and H 2 O 2(aq) , which thus represents the capabilities of most global models; (2) the more advanced standard EMAC mechanism, which includes inorganic chemistry and simplified degradation of methane oxidation products; and (3) the detailed in-cloud OVOC oxidation scheme Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC). By using EMAC, the global impact of each mechanism is assessed focusing mainly on tropospheric volatile organic compounds (VOCs), HO x ( HO x = OH + HO 2 ), and O 3 . This is achieved by performing a detailed HO x and O 3 budget analysis in the gas and aqueous phase. The resulting changes are evaluated against O 3 and methanol ( CH 3 OH ) satellite observations from the Infrared Atmospheric Sounding Interferometer (IASI) for 2015. In general, the explicit in-cloud oxidation leads to an overall reduction in predicted OVOC levels and reduces EMAC's overestimation of some OVOCs in the tropics. The in-cloud OVOC oxidation shifts the HO 2 production from the gas to the aqueous phase. As a result, the O 3 budget is perturbed with scavenging being enhanced and the gas-phase chemical losses being reduced. With the simplified in-cloud chemistry, about 13? Tg?yr ?1 of O 3 is scavenged, which increases to 336? Tg?yr ?1 when JAMOC is used. The highest O 3 reduction of 12?% is predicted in the upper troposphere–lower stratosphere?(UTLS). These changes in the free troposphere significantly reduce the modelled tropospheric ozone columns, which are known to be generally overestimated by EMAC and other global atmospheric models.
机译:在液体云液滴中,已知超氧化物阴离子(O 2(AQ) - )快速消耗臭氧(O 3(AQ)),其相对不溶。这种反应作为对流层O 3水槽的重要性对O 2(AQ)的丰度敏感 - 因此对其主要前体的产生,水过氧基(HO 2(AQ))。含氧挥发性有机化合物(OVOC)的水相氧化是云液滴中HO 2(AQ)的主要来源。因此,全球大气模型中缺乏明确的水相化学动力学导致云的一般低估为O 3下沉。在这项研究中,通过使用化学作为BoxModel应用程序(CAABA)和全球ECHAM /凌乱大气化学(EMAC)模型来评估对对流层组成的云ovoc氧化的重要性,这些模型都能够明确代表相关的化学转化。对于该分析,采用三种不同的含云氧化机制:(1)由O 3(AQ)和H 2 O 2(AQ)的SO 2(AQ)的碱性氧化的一种不同的氧化机构,因此表示最多的能力全球模型; (2)更先进的标准EMAC机制,包括无机化学和简化甲烷氧化产品的降解; (3)详细的云卵OVOC氧化方案Jülich有机化学水相机制(JAMOC)。通过使用EMAC,评估各种机制的全局影响主要在对流层挥发性有机化合物(VOC),HO X(HO X = OH + HO 2)和O 3上进行重点。这是通过在气体和水相中进行详细的HO X和O 3预算分析来实现的。从2015年的红外大气探测干涉干涉仪(IASI)的O 3和甲醇(CH 3 OH)卫星观测评估所得的变化。通常,明确的云氧化导致预测的OVOC水平的总体减少并减少了EMAC的高估热带地区的一些卵子。云ovoc氧化将HO 2生产从气体转移到水相。结果,o 3预算受到加强的扰动,增强了缓解,并且减少了气相化学损失。用简化的云化学化学,约13? TG?YR?1的o 3的清除,这增加到336?使用Jamoc时,TG?1。在上层 - 较低的平流层上预测最高的O 3减少12μl%?(UTLS)。自由对流层的这些变化显着减少了模拟的对流层臭氧柱,该臭氧柱通常由EMAC和其他全球大气模型大致估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号