...
首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Oxidation of low-molecular-weight organic compounds in cloud droplets: global impact on tropospheric oxidants
【24h】

Oxidation of low-molecular-weight organic compounds in cloud droplets: global impact on tropospheric oxidants

机译:云液滴中低分子量有机化合物的氧化:对流层氧化剂的全局影响

获取原文
   

获取外文期刊封面封底 >>

       

摘要

In liquid cloud droplets, superoxide anion ( O 2 ( aq ) - ) is known to quickly consume ozone ( O 3(aq) ), which is relatively insoluble. The significance of this reaction as a tropospheric O 3 sink is sensitive to the abundance of O 2 ( aq ) - and therefore to the production of its main precursor, the hydroperoxyl radical ( HO 2(aq) ). The aqueous-phase oxidation of oxygenated volatile organic compounds (OVOCs) is the major source of HO 2(aq) in cloud droplets. Hence, the lack of explicit aqueous-phase chemical kinetics in global atmospheric models leads to a general underestimation of clouds as O 3 sinks. In this study, the importance of in-cloud OVOC oxidation for tropospheric composition is assessed by using the Chemistry As A Boxmodel Application (CAABA) and the global ECHAM/MESSy Atmospheric Chemistry (EMAC) model, which are both capable of explicitly representing the relevant chemical transformations. For this analysis, three different in-cloud oxidation mechanisms are employed: (1) one including the basic oxidation of SO 2(aq) by O 3(aq) and H 2 O 2(aq) , which thus represents the capabilities of most global models; (2) the more advanced standard EMAC mechanism, which includes inorganic chemistry and simplified degradation of methane oxidation products; and (3) the detailed in-cloud OVOC oxidation scheme Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC). By using EMAC, the global impact of each mechanism is assessed focusing mainly on tropospheric volatile organic compounds (VOCs), HO x ( HO x = OH + HO 2 ), and O 3 . This is achieved by performing a detailed HO x and O 3 budget analysis in the gas and aqueous phase. The resulting changes are evaluated against O 3 and methanol ( CH 3 OH ) satellite observations from the Infrared Atmospheric Sounding Interferometer (IASI) for 2015. In general, the explicit in-cloud oxidation leads to an overall reduction in predicted OVOC levels and reduces EMAC's overestimation of some OVOCs in the tropics. The in-cloud OVOC oxidation shifts the HO 2 production from the gas to the aqueous phase. As a result, the O 3 budget is perturbed with scavenging being enhanced and the gas-phase chemical losses being reduced. With the simplified in-cloud chemistry, about 13? Tg?yr ?1 of O 3 is scavenged, which increases to 336? Tg?yr ?1 when JAMOC is used. The highest O 3 reduction of 12?% is predicted in the upper troposphere–lower stratosphere?(UTLS). These changes in the free troposphere significantly reduce the modelled tropospheric ozone columns, which are known to be generally overestimated by EMAC and other global atmospheric models.
机译:在液体云滴,超氧阴离子(O 2(水溶液) - )是已知的快速消耗臭氧(O 3(水溶液)),这是相对不溶性的。该反应中作为对流层O 3片的意义在于丰敏感O 2(水溶液) - ,因此生产它的主要前体,该氢过氧自由基(HO 2(水溶液))的。含氧的挥发性有机化合物(OVOCs)的水性相氧化是HO 2(水溶液)的云滴的主要来源。因此,在缺乏全球大气模型线索明确的水相化学动力学,以云为O 3片的总体低估。在这项研究中,在云OVOC氧化对流层组合物的重要性通过使用化学如甲Boxmodel申请(CAABA)和全局ECHAM /凌乱大气化学(EMAC)模型,这两者都是能够明确地表示有关评估化学转化。对于该分析,三种不同的在云氧化机制被采用:(1)一个包括SO 2(水溶液)由基本氧化O 3(水溶液)和H 2 O 2(水溶液),其因此代表的大部分的能力全球模型; (2)更高级的标准EMAC机构,其包括无机化学和甲烷氧化产物简化退化;和(3)中详述的云OVOC氧化方案利希有机化学(JAMOC)的水相机制。通过使用EMAC,各机构的全球影响评估主要集中在对流层的挥发性有机化合物(VOC),HO X(HO X = OH + HO 2),和O 3。这是由气体和水相在执行详述HO x和O 3预算分析来实现的。由此产生的变化对O 3和甲醇(CH 3 OH)从红外大气探测干涉(IASI)卫星观测为2015年一般地,显式在云氧化导致在预测OVOC水平的整体降低进行评价,并减少EMAC的在热带地区的一些OVOCs的高估。中云OVOC氧化转移到HO 2产生从气体到水相中。其结果是,在O 3预算被扰动与扫气被增强,并且被还原的气相化学损失。随着简化云化学,约13?的Tg?年?的O 3 1被清除,这增加至336?当使用TG?年?1 JAMOC。最高O 3减少12?%在上对流层 - 低级平流层预测?(UTLS)。这些变化在自由对流层显著减少模拟对流层臭氧列,这是众所周知的通过EMAC和其他全球大气模型被普遍高估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号