首页> 外文期刊>Applied Microbiology >Redox Engineering by Ectopic Overexpression of NADH Kinase in Recombinant Pichia pastoris (Komagataella phaffii): Impact on Cell Physiology and Recombinant Production of Secreted Proteins
【24h】

Redox Engineering by Ectopic Overexpression of NADH Kinase in Recombinant Pichia pastoris (Komagataella phaffii): Impact on Cell Physiology and Recombinant Production of Secreted Proteins

机译:重组Pichia Pastoris中NADH激酶异位过度表达的氧化还原工程(Komagataella phaffii):对细胞生理学和分泌蛋白质的重组产生的影响

获取原文
           

摘要

High-level expression and secretion of heterologous proteins in yeast cause an increased energy demand, which may result in altered metabolic flux distributions. Moreover, recombinant protein overproduction often results in endoplasmic reticulum (ER) stress and oxidative stress, causing deviations from the optimal NAD(P)H regeneration balance. In this context, overexpression of genes encoding enzymes catalyzing endogenous NADPH-producing reactions, such as the oxidative branch of the pentose phosphate pathway, has been previously shown to improve protein production in Pichia pastoris (syn. Komagataella spp.). In this study, we evaluate the overexpression of the Saccharomyces cerevisiae POS5 -encoded NADH kinase in a recombinant P. pastoris strain as an alternative approach to overcome such redox constraints. Specifically, POS5 was cooverexpressed in a strain secreting an antibody fragment, either by directing Pos5 to the cytosol or to the mitochondria. The physiology of the resulting strains was evaluated in continuous cultivations with glycerol or glucose as the sole carbon source, as well as under hypoxia (on glucose). Cytosolic targeting of Pos5 NADH kinase resulted in lower biomass-substrate yields but allowed for a 2-fold increase in product specific productivity. In contrast, Pos5 NADH kinase targeting to the mitochondria did not affect growth physiology and recombinant protein production significantly. Growth physiological parameters were in silico evaluated using the recent upgraded version (v3.0) of the P. pastoris consensus genome-scale metabolic model iMT1026, providing insights on the impact of POS5 overexpression on metabolic flux distributions.IMPORTANCE Recombinant protein overproduction often results in oxidative stress, causing deviations from the optimal redox cofactor regeneration balance. This becomes one of the limiting factors in obtaining high levels of heterologous protein production. Overexpression of redox-affecting enzymes has been explored in other organisms, such as Saccharomyces cerevisiae , as a means to fine tune the cofactor regeneration balance in order to obtain higher protein titers. In the present work, this strategy is explored in P. pastoris . In particular, one NADH kinase enzyme from S. cerevisiae (Pos5) is used, either in the cytosol or in mitochondria of P. pastoris , and its impact on the production of a model protein (antibody fragment) is evaluated. A significant improvement in the production of the model protein is observed when the kinase is directed to the cytosol. These results are significant in the field of heterologous protein production in general and in particular in the development of improved metabolic engineering strategies for P. pastoris .
机译:酵母中异源蛋白的高水电表达和分泌导致能源需求增加,这可能导致代谢通量分布改变。此外,重组蛋白质过度生产通常导致内质网(ER)应激和氧化应激,导致与最佳NAD(P)H再生平衡的偏差。在这种情况下,先前已经显示出在催化催化磷酸磷途径的氧化分支的酶催化酶的氧化分支的过表达,以改善Pichia Pastoris(SYN。Komagataella SPP中的蛋白质产生。在这项研究中,我们评估了在重组P.牧场菌中的酿酒酵母酿酒酵母的过度表达,作为克服这种氧化还原约束的替代方法。具体地,通过将​​POS5引导至细胞溶质或线粒体,在分泌分泌抗体片段的菌株中进行POS5。用甘油或葡萄糖作为唯一碳源以及缺氧(在葡萄糖)下,评价所得菌株的生理学。 POS5 NADH激酶的细胞溶质靶向导致较低的生物质 - 基质产率,但允许产品比生产率的2倍。相反,靶向线粒体的POS5 NADH激酶不会显着影响生长生理和重组蛋白质产生。使用近期升级版本(V3.0)的P.Segoris共识基因组代谢模型IMT1026评估的生长生理参数在硅中评估,为POS5过表达对代谢助焊剂分布的影响提供了见解。分析重组蛋白质过量经常导致氧化应激,引起与最佳氧化还原辅因子再生平衡的偏差。这成为获得高水平异源蛋白质产生的限制因素之一。在其他生物体中探讨了氧化还原酶的过度表达,例如酿酒酵母,如酿酒酵母,作为微调辅因子再生平衡的手段,以获得更高的蛋白质滴度。在目前的工作中,P. Pastoris探讨了这一战略。特别地,使用来自S.Cerevisiae(POS5)的一种NADH激酶酶,其无论是在胞浆中或P. Pastoris的线粒体中,还评估其对模型蛋白质(抗体片段)的产生的影响。当激酶涉及胞质溶胶时,观察到模型蛋白的产生的显着改善。这些结果在异源蛋白质产量领域中是显着的,特别是在改善P. Pastoris的改进代谢工程策略中的发展中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号