首页> 外文期刊>Mobile information systems >Resource Caching and Task Migration Strategy of Small Cellular Networks under Mobile Edge Computing
【24h】

Resource Caching and Task Migration Strategy of Small Cellular Networks under Mobile Edge Computing

机译:移动边缘计算下小型蜂窝网络的资源缓存与任务迁移策略

获取原文

摘要

As computing-intensive mobile applications become increasingly diversified, mobile devices’ computing power is hard to keep up with demand. Mobile devices migrate tasks to the Mobile Edge Computing (MEC) platform and improve the performance of task processing through reasonable allocation and caching of resources on the platform. Small cellular networks (SCN) have excellent short-distance communication capabilities, and the combination of MEC and SCN is a promising research direction. This paper focuses on minimizing energy consumption for task migration in small cellular networks and proposes a task migration energy optimization strategy with resource caching by combining optimal stopping theory with migration decision-making. Firstly, the process of device finding the MEC platform with the required task processing resources is formulated as the optimal stopping problem. Secondly, we prove an optimal stopping rule’s existence, obtain the optimal processing energy consumption threshold, and compare it with the device energy consumption. Finally, the platform with the best energy consumption is selected to process the task. In the simulation experiment, the optimization strategy has lower average migration energy consumption and higher average data execution energy efficiency and average distance execution energy efficiency, which improves task migration performance by 10%?~?60%.
机译:随着计算密集型移动应用变得越来越多样化,移动设备的计算能力难以跟上需求。移动设备将任务迁移到移动边缘计算(MEC)平台,并通过平台上的资源的合理分配和缓存来提高任务处理的性能。小型蜂窝网络(SCN)具有出色的短距离通信能力,MEC和SCN的组合是一个有前途的研究方向。本文侧重于最小化小型蜂窝网络中的任务迁移的能耗,并提出了通过结合迁移决策的最佳停止理论来实现资源缓存的任务迁移能量优化策略。首先,将具有所需任务处理资源的设备找到MEC平台的设备作为最佳停止问题。其次,我们证明了最佳停止规则的存在,获得最佳处理能耗阈值,并将其与设备能量消耗进行比较。最后,选择具有最佳能耗的平台来处理任务。在仿真实验中,优化策略具有较低的平均迁移能量消耗和更高的平均数据执行能效和平均距离执行能效,从而提高了任务迁移性能10%?〜?60%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号