首页> 外文期刊>MBio >The Termite Fungal Cultivar Termitomyces Combines Diverse Enzymes and Oxidative Reactions for Plant Biomass Conversion
【24h】

The Termite Fungal Cultivar Termitomyces Combines Diverse Enzymes and Oxidative Reactions for Plant Biomass Conversion

机译:白蚁真菌品种<斜斜体> Termitomyces 将不同的酶和氧化反应结合起来的植物生物质转化

获取原文
           

摘要

ABSTRACT Macrotermitine termites have domesticated fungi in the genus Termitomyces as their primary food source using predigested plant biomass. To access the full nutritional value of lignin-enriched plant biomass, the termite-fungus symbiosis requires the depolymerization of this complex phenolic polymer. While most previous work suggests that lignocellulose degradation is accomplished predominantly by the fungal cultivar, our current understanding of the underlying biomolecular mechanisms remains rudimentary. Here, we provide conclusive omics and activity-based evidence that Termitomyces employs not only a broad array of carbohydrate-active enzymes (CAZymes) but also a restricted set of oxidizing enzymes (manganese peroxidase, dye decolorization peroxidase, an unspecific peroxygenase, laccases, and aryl-alcohol oxidases) and Fenton chemistry for biomass degradation. We propose for the first time that Termitomyces induces hydroquinone-mediated Fenton chemistry (Fe ~(2+) + H _(2)O _(2) + H ~(+) → Fe ~(3+) + ~(?)OH + H _(2)O) using a herein newly described 2-methoxy-1,4-dihydroxybenzene (2-MH _(2)Q, compound 19)-based electron shuttle system to complement the enzymatic degradation pathways. This study provides a comprehensive depiction of how efficient biomass degradation by means of this ancient insect’s agricultural symbiosis is accomplished.
机译:摘要Macrotermitine白蚁在Termitomyces属中驯养的真菌作为使用预先植物生物质的主要食物来源。为了进入富含木质素植物生物质的全营养价值,蚁胺菌合作社需要该复合酚聚合物的解聚。虽然最先前的工作表明,Ligncellulose降解主要由真菌品种完成,但我们目前对潜在的生物分子机制的理解仍然是基本的。在这里,我们提供了基于结论的常规和基于活动的证据,即Termitomyces不仅采用了广泛的碳水化合物 - 活性酶(辛糖酶),而且还采用了一系列限制氧化酶(锰过氧化物酶,染料脱氧过氧化物酶,未特异性过氧化根酶,漆酶和芳基醇氧化酶)和生物质降解的芬顿化学。我们第一次提出Termitomyces诱导氢醌介导的FENTON化学(Fe〜(2+)+ H _(2)O _(2)+ H〜(+)→Fe〜(3+)+〜(?) OH + H _(2)o)使用本文新描述的2-甲氧基-1,4-二羟基苯(2-MH _(2)Q,化合物19),基于电子养育系统,以补充酶降解途径。本研究规定了通过这种古老的昆虫的农业共生的效率降解了综合描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号