首页> 外文期刊>Procedia Computer Science >Tokamak plasma models development for plasma magnetic control systems design by first principle equations and identification approach
【24h】

Tokamak plasma models development for plasma magnetic control systems design by first principle equations and identification approach

机译:托卡马克等离子磁控系统设计开发的第一原理方程和识别方法

获取原文
       

摘要

To design plasma magnetic control systems in modern tokamaks one needs models of the plasma. These models are linear parameter varying (LPV) because of relatively small variations of outputs of the feedback loops around scenarios and may be obtained by first-principle equations, identification approach or by their combinations. The challenge of obtaining models of the plasma in the tokamak becomes more complicated by the existence of plasma position and poloidal field control loops with diagnostics and actuators which are needed as inner cascades for plasma current and shape control in particular on the Globus-M2 tokamak (Ioffe Inst., St. Petersburg, RF). The plasma equilibrium is reconstructed on the base of magnetic measurements outside the plasma by Picard iterations, moving filaments or neural networks, and linear plasma models are developed around the equilibrium with the help of the Kirchhoff’s law and force balance. In order to ensure the operability of plasma current and shape feedback control systems, the identification approach (controlled plant model design on the base of experimental input-output signals) is planned to be used. The basic methods of the identification are supposed to be applied as follows: subspaces, wavelets, linear matrix inequalities (LMIs), adaptive state observers, and dynamical neural networks which are able to automatically adjust their states to an unknown plant (elements of artificial intelligence). The solutions of the identification problem will be compared with the models obtained by the first principles with the aim to get the sufficient accuracy of coincidence. The approaches to be developed of getting tokamak plasma models may be applied to any vertically elongated (D-shaped) operating tokamak such as Globus-M2 (RF), D-IIID, NSTX (US), JET, ST40 (GB), ASDEX Upgrade (Germany), TCV (Switzerland), EAST (China), Damavand (Iran) etc.
机译:在现代Tokamaks设计等离子体磁控系统,等离子体的需要模型。这些模型是线性参数变化(LPV),因为在场景周围的反馈循环输出的输出相对较小,并且可以通过第一原理方程,识别方法或其组合获得。通过具有诊断和致动器的等离子体位置和致动器的存在诊断和致动器的存在诊断和致动器的诊断和致动器,可以更加复杂地变得更加复杂。特别是在Globus-M2 Tokamak上的等离子体电流和形状控制所需的诊断和致动器。 IOFFE INST。,圣彼得堡,RF)。通过Picard迭代,移动细丝或神经网络在等离子体之外的磁性测量基部重建等离子体平衡,并且在Kirchhoff的法律和力平衡的帮助下,围绕均衡的线性等离子体模型。为了确保等离子体电流和形状反馈控制系统的可操作性,计划使用识别方法(实验输入输出信号基部上的受控设备模型设计)。该识别的基本方法应该如下应用:子空间,小波,线性矩阵不等式(LMIS),自适应状态观察者和动态神经网络,能够自动将其状态调节到未知植物(人工智能的元素)。将识别问题的解决方案与第一个原则获得的模型进行比较,其目的是获得足够的巧合的精度。用于获得Tokamak等离子体模型的方法可以应用于任何垂直细长的(D形)操作托卡马克,例如Globus-M2(RF),D-IIID,NSTX(US),喷射,ST40(GB),ASDEX升级(德国),TCV(瑞士),东(中国),Damavand(伊朗)等

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号