首页> 外文期刊>Journal of Information Engineering and Applications >Nonlinear Autoregressive Moving Average-L2 Model Based Adaptive Control of Nonlinear Arm Nerve Simulator System
【24h】

Nonlinear Autoregressive Moving Average-L2 Model Based Adaptive Control of Nonlinear Arm Nerve Simulator System

机译:非线性自回转移动平均-L2基于非线性臂神经模拟器系统的自适应控制

获取原文

摘要

This paper considers the trouble of the usage of approximate strategies for realizing the neural controllers for nonlinear SISO systems. In this paper, we introduce the nonlinear autoregressive moving average (NARMA-L2) model which might be approximations to the NARMA model. The nonlinear autoregressive moving average (NARMA-L2) model is an precise illustration of the input–output behavior of finite-dimensional nonlinear discrete time dynamical systems in a neighborhood of the equilibrium state. However, it isn't always handy for purposes of neural networks due to its nonlinear dependence on the manipulate input. In this paper, nerves system based arm position sensor device is used to degree the precise arm function for nerve patients the use of the proposed systems. In this paper, neural network controller is designed with NARMA-L2 model, neural network controller is designed with NARMA-L2 model system identification based predictive controller and neural network controller is designed with NARMA-L2 model based model reference adaptive control system. Hence, quite regularly, approximate techniques are used for figuring out the neural controllers to conquer computational complexity. Comparison were made among the neural network controller with NARMA-L2 model, neural network controller with NARMA-L2 model system identification based predictive controller and neural network controller with NARMA-L2 model reference based adaptive control for the preferred input arm function (step, sine wave and random signals). The comparative simulation result shows the effectiveness of the system with a neural network controller with NARMA-L2 model based model reference adaptive control system.
机译:本文考虑了使用近似战略来实现非线性SISO系统的神经控制器的麻烦。在本文中,我们介绍了可能是对数方模型的近似值的非线性自回归移动平均(NARMA-L2)模型。非线性自回归移动平均(NARMA-L2)模型是在平衡状态附近的有限尺寸非线性离散时间动态系统的输入 - 输出行为的精确例证。然而,由于其非线性依赖性对操纵输入的非线性依赖性,它并不总是方便。在本文中,神经基于系统的臂位置传感器装置用于核心患者的精确臂功能,用于使用所提出的系统。本文采用Narma-L2型号设计了神经网络控制器,神经网络控制器设计为基于网络-L2型号系统识别的预测控制器和神经网络控制器,设计了基于网络L2模型参考自适应控制系统。因此,相当规则地,用于预测神经控制器以征服计算复杂性的近似技术。基于网络-L2模型系统识别的Narma-L2模型的神经网络控制器的神经网络控制器中进行了比较,该预测控制器和神经网络控制器,具有基于Narma-L2模型基于基于基于的自适应控制的优选输入臂功能(步骤,正弦波浪和随机信号)。比较仿真结果显示了具有基于网络-L2模型参考自适应控制系统的神经网络控制器的系统的有效性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号