首页> 外文期刊>Hydrology and Earth System Sciences Discussions >Global change in streamflow extremes under climate change over the 21st century
【24h】

Global change in streamflow extremes under climate change over the 21st century

机译:在21世纪,气候变化下的流动极端的全球变化

获取原文

摘要

Global warming is expected to intensify the Earth's hydrological cycle and increase flood and drought risks. Changes over the 21st century under two warming scenarios in different percentiles of the probability distribution of streamflow, and particularly of high and low streamflow extremes (95th and 5th percentiles), are analyzed using an ensemble of bias-corrected global climate model (GCM) fields fed into different global hydrological models (GHMs) provided by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to understand the changes in streamflow distribution and simultaneous vulnerability to different types of hydrological risk in different regions. In the multi-model mean under the Representative Concentration Pathway 8.5 (RCP8.5) scenario, 37?% of global land areas experience an increase in magnitude of extremely high streamflow (with an average increase of 24.5?%), potentially increasing the chance of flooding in those regions. On the other hand, 43?% of global land areas show a decrease in the magnitude of extremely low streamflow (average decrease of 51.5?%), potentially increasing the chance of drought in those regions. About 10?% of the global land area is projected to face simultaneously increasing high extreme streamflow and decreasing low extreme streamflow, reflecting the potentially worsening hazard of both flood and drought; further, these regions tend to be highly populated parts of the globe, currently holding around 30?% of the world's population (over 2.1?billion people). In a world more than 4° warmer by the end of the 21st century compared to the pre-industrial era (RCP8.5 scenario), changes in magnitude of streamflow extremes are projected to be about twice as large as in a 2° warmer world (RCP2.6 scenario). Results also show that inter-GHM uncertainty in streamflow changes, due to representation of terrestrial hydrology, is greater than the inter-GCM uncertainty due to simulation of climate change. Under both forcing scenarios, there is high model agreement for increases in streamflow of the regions near and above the Arctic Circle, and consequent increases in the freshwater inflow to the Arctic Ocean, while subtropical arid areas experience a reduction in streamflow.
机译:预计全球变暖将加剧地球的水文循环,增加洪水和干旱风险。使用偏置全球气候模型(GCM)领域的集合来分析21世纪的21世纪下的两个变暖场景下的两个热化场景,尤其是高且低流流极值(第95和第5百分位数)进行分析喂入由局部跨部门影响模型互通项目(ISI-MIP)提供的不同全球水文模型(GHM),以了解流流分布的变化以及不同地区不同类型的水文风险的同时漏洞。在代表浓度途径8.5(RCP8.5)方案下的多模型意味着,全球土地地区的37个?%的陆地区域的幅度幅度的增加(平均增加24.5?%),可能增加了机会在这些地区的洪水。另一方面,43个?%的全球土地区域显示出极低流流量的幅度下降(平均降低51.5?%),可能增加了这些地区干旱的机会。大约10个?%的全球陆地面积被投射到面对同时增加高极端流流并降低低极其流流,反映了洪水和干旱潜在恶化的危害;此外,这些地区往往是全球的高度人口稠密的部分,目前持有世界人口的约30?%(超过2.1亿人)。在21世纪末的世界中,与工业前的时代(RCP8.5场景)相比,在21世纪结束时,流出极端的变化将投射到2°温暖世界中的大约两倍(rcp2.6场景)。结果还表明,由于陆地水文的表示,流出的间流流出的间歇性不确定性大于气候变化模拟导致的GCM间不确定性。在强制性方案下,有高模型协议,即北极圈附近和上方的区域的流出的速度增加,随之而来的淡水流入到北冰洋,而亚热带干旱地区经历了流出的减少。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号