It has recently been argued [1] that the inclusion of surface operators in 4 d $ mathcal{N} = 2 $ SU(2) quiver gauge theories should correspond to insertions of certain degenerate operators in the dual Liouville theory. So far only the insertion of a single surface operator has been treated (in a semi-classical limit). In this paper we study and generalise this proposal. Our approach relies on the use of topological string theory techniques. On the B-model side we show that the effects of multiple surface operator insertions in 4 d $ mathcal{N} = 2 $ gauge theories can be calculated using the B-model topological recursion method, valid beyond the semi-classical limit. On the mirror A-model side we find by explicit computations that the 5 d lift of the SU( N ) gauge theory partition function in the presence of (one or many) surface operators is equal to an A-model topological string partition function with the insertion of (one or many) toric branes. This is in agreement with an earlier proposal by Gukov [2, 2, 3]. Our A-model results were motivated by and agree with what one obtains by combining the AGT conjecture with the dual interpretation in terms of degenerate operators. The topological string theory approach also opens up new possibilities in the study of 2 d Toda field theories.
展开▼
机译:它最近被认为是在4 d $ mathcal {n} = 2 $ 2 $ su(2)静态仪表理论中包含表面运算符,应符合某些退化运营商在双延志理论中的插入。到目前为止,仅处理了单个表面操作员的插入(以半古典的极限)。在本文中,我们研究并概括了这一提议。我们的方法依赖于拓扑弦理论技术的使用。在B模型方面,我们表明,可以使用B模型拓扑递归方法计算多个表面操作员插入的效果{n} = 2 $仪表理论,有效超出半古典限制。在镜像A模型方面,我们发现SU(n)仪表理论分区在(一个或多个)曲面运算符的存在中的5 d升降量等于A模型拓扑串分区功能插入(一个或多个)复纹斑块。这与Gukov [2,2,3]的早期提案一致。我们的型号结果是通过将AGT猜想与退化运营商的双重解释组合来获得的人获得并同意。拓扑字符串理论方法也在2 D Toda田间理论研究中开辟了新的可能性。
展开▼