Let (Xn,t) ∞t=1 be a stationary absolutely regular sequence of real random variables with the distribution dependent on the number n. The paper presents sufficient conditions for the asymptotic normality (for n → ∞ and common centering and normalization) of the distribution of the nonhomogeneous U-statistic of order r which is given on the sequence Xn,1, . . . , Xn,n with a kernel also dependent on n. The same results for V -statistics also hold. To analyze sums of dependent random variables with rare strong dependencies, the proof uses the approach that was proposed by S. Janson in 1988 and upgraded by V. Mikhailov in 1991 and M. Tikhomirova and V. Chistyakov in 2015.
展开▼
机译:让(xn,t)∞t= 1是静止的绝对规则的真正随机变量序列,其中分布依赖于数字n。本文为序列XN,1的序列R的分布呈现了渐近正常性(对于n→∞和常见的定性和归一化)的渐近常数(n→∞和常见化)。 。 。 ,xn,n,内核也依赖于n。 V -Statistics的结果也持有。为了分析具有罕见依赖性的依赖随机变量的总和,证明使用了1988年由S. Janson提出的方法,并于1991年的V.Mikhailov和2015年的M.Tikhomirova和V.Chistyakov升级。
展开▼