首页> 外文期刊>Nonlinear Processes in Geophysics Discussions >Vertical profiles of wind gust statistics from a regional reanalysis using multivariate extreme value theory
【24h】

Vertical profiles of wind gust statistics from a regional reanalysis using multivariate extreme value theory

机译:利用多元极值理论,从区域再分析的风力阵伤垂直概况

获取原文

摘要

Many applications require wind gust estimates at very different atmospheric height levels. For example, the renewable energy sector is interested in wind and gust predictions at the hub height of a wind power plant. However, numerical weather prediction models typically only derive estimates for wind gusts at the standard measurement height of 10m above the land surface. Here, we present a statistical post-processing method to derive a conditional distribution for hourly peak wind speed as a function of height. The conditioning variables are taken from the COSMO-REA6 regional reanalysis. The post-processing method was trained using peak wind speed observations at five vertical levels between 10 and 250m from the Hamburg Weather Mast. The statistical post-processing method is based on a censored generalized extreme value (cGEV) distribution with non-homogeneous parameters. We use a least absolute shrinkage and selection operator to select the most informative variables. Vertical variations of the cGEV parameters are approximated using Legendre polynomials, such that predictions may be derived at any desired vertical height. Further, the Pickands dependence function is used to assess dependencies between gusts at different heights. The most important predictors are the 10m gust diagnostic, the barotropic and the baroclinic mode of absolute horizontal wind speed, the mean absolute horizontal wind at 700hPa, the surface pressure tendency, and the lifted index. Proper scores show improvements of up to 60% with respect to climatology, especially at higher vertical levels. The post-processing model with a Legendre approximation is able to provide reliable predictions of gusts' statistics at non-observed intermediate levels. The strength of dependency between gusts at different levels is non-homogeneous and strongly modulated by the vertical stability of the atmosphere.
机译:许多应用需要在非常不同的大气高度水平下估计风力阵风。例如,可再生能源部门对风力发电厂的枢纽高度的风力和阵风预测感兴趣。然而,数值天气预报模型通常仅在土地表面上方10米的标准测量高度处导出风力阵风的估计。在这里,我们提出了一种统计的后处理方法,以获得作为高度的函数的每小时峰风速的条件分布。调节变量取自COSMO-REA6区域再分析。在汉堡天气桅杆的5个垂直水平下,使用峰风速观测训练后处理方法培训。统计后处理方法基于具有非均匀参数的审查的广义极值(CGEV)分布。我们使用最小的绝对收缩和选择操作员来选择最具信息性的变量。 CGEV参数的垂直变型使用Legendre多项式近似,使得可以在任何期望的垂直高度处导出预测。此外,泡头依赖函数用于评估不同高度的阵风之间的依赖性。最重要的预测因子是10M阵风诊断,压力学和曲中的绝对水平风速,平均绝对水平风在700HPa,表面压力趋势和提升指数。适当的分数显示相对于气候学的改善高达60%,特别是在较高的垂直水平上。具有Legendre近似的后处理模型能够在非观察到的中间水平提供阵风的统计数据的可靠预测。在不同水平的阵风之间的依赖强度是非均匀的,并且通过大气的垂直稳定性而强烈地调节。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号