首页> 外文期刊>Nonlinear Processes in Geophysics Discussions >Probabilistic downscaling of precipitation data in a subtropical mountain area: a two-step approach
【24h】

Probabilistic downscaling of precipitation data in a subtropical mountain area: a two-step approach

机译:亚热带山区降水数据的概率俯就:两步方法

获取原文

摘要

In this study, a two-step probabilistic downscaling approach is introduced and evaluated. The method is exemplarily applied on precipitation observations in the subtropical mountain environment of the High Atlas in Morocco. The challenge is to deal with a complex terrain, heavily skewed precipitation distributions and a sparse amount of data, both spatial and temporal. In the first step of the approach, a transfer function between distributions of large-scale predictors and of local observations is derived. The aim is to forecast cumulative distribution functions with parameters from known data. In order to interpolate between sites, the second step applies multiple linear regression on distribution parameters of observed data using local topographic information. By combining both steps, a prediction at every point of the investigation area is achieved. Both steps and their combination are assessed by cross-validation and by splitting the available dataset into a trainings- and a validation-subset. Due to the estimated quantiles and probabilities of zero daily precipitation, this approach is found to be adequate for application even in areas with difficult topographic circumstances and low data availability.
机译:在这项研究中,引入和评估了两步概率缩小方法。该方法示例性地应用于摩洛哥高地图集的亚热带山环境中的降水观察。挑战是处理复杂的地形,严重倾斜的降水分布和稀疏数据,包括空间和时间。在该方法的第一步中,推导出大规模预测器和局部观测的分布之间的传递函数。目的是预测来自已知数据的参数的累积分布函数。为了在站点之间插入,第二步使用本地地形信息对观察数据的分布参数应用多个线性回归。通过组合两个步骤,实现了调查区域的每个点的预测。通过交叉验证评估两个步骤和它们的组合,并通过将可用的数据集分成培训和验证子集来评估。由于估计的量数和零日降水的概率,即使在具有困难困难的地区和低数据可用性的区域,这种方法也被发现适用于应用。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号