首页> 外文期刊>EURASIP journal on audio, speech, and music processing >Estimation of acoustic echoes using expectation-maximization methods
【24h】

Estimation of acoustic echoes using expectation-maximization methods

机译:利用期望最大化方法估计声学回波

获取原文

摘要

Estimation problems like room geometry estimation and localization of acoustic reflectors are of great interest andimportance in robot and drone audition. Several methods for tackling these problems exist, but most of them rely oninformation about times-of-arrival (TOAs) of the acoustic echoes. These need to be estimated in practice, which is adifficult problem in itself, especially in robot applications which are characterized by high ego-noise. Moreover, even ifTOAs are successfully extracted, the difficult problem of echolabeling needs to be solved. In this paper, we proposemultiple expectation-maximization (EM) methods, for jointly estimating the TOAs and directions-of-arrival (DOA) of theechoes, with a uniform circular array (UCA) and a loudspeaker in its center for probing the environment. The differentmethods are derived to be optimal under different noise conditions. The experimental results show that the proposedmethods outperform existing methods in terms of estimation accuracy in noisy conditions. For example, it can provideaccurate estimates at SNR of 10 dB lower compared to TOA extraction from room impulse responses, which is oftenused. Furthermore, the results confirm that the proposed methods can account for scenarios with colored noise orfaulty microphones. Finally, we show the applicability of the proposed methods in mapping of an indoor environment.
机译:房间几何估计和声反射器定位等问题的估计问题具有很大的兴趣和机器人和无人机试镜。存在解决这些问题的几种方法,但大多数人都依赖于声学回波的到达时间(TOAS)的信息。这些需要在实践中估计,这本身就是一种粘性问题,尤其是在机器人应用中,其特征在于高精度噪声。此外,即使成功地提取了Iftoas,也需要解决呼应标签的难题。在本文中,我们预期期望 - 最大化(EM)方法,用于共同估计TheChoes的托纳和到达方向(DOA),在其中心探测环境中的中心均匀圆形阵列(UCA)和扬声器。在不同的噪声条件下得出不同的方法是最佳的。实验结果表明,在噪声条件下估计准确性方面,该拟议方法优于现有的方法。例如,与房间脉冲响应的TOA提取相比,它可以在10 dB的SNR下估计,这是经常使用的。此外,结果证实,所提出的方法可以解释具有彩色噪声或消除麦克风的情景。最后,我们展示了所提出的方法在室内环境的映射中的适用性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号