首页> 外文期刊>Advances in Electrical and Electronic Engineering >Ensemble feature selection approach based on feature ranking for rice seed images classification
【24h】

Ensemble feature selection approach based on feature ranking for rice seed images classification

机译:基于稻米图像分类的特征排名的合奏特征选择方法

获取原文

摘要

In smart agriculture, rice variety inspection systems based on computer vision need to be used for recognizing rice seeds instead of using technical experts. In this paper, we have investigated three types of local descriptors, such as Local Binary Pattern (LBP), Histogram of Oriented Gradients (HOG) and GIST to characterize rice seed images. However, this approach raises the curse of dimensionality phenomenon and needs to select the relevant features for a compact and better representation model. A new ensemble feature selection is proposed to represent all useful information collected from different single feature selection methods. The experimental results have shown the efficiency of our proposed method in terms of accuracy.
机译:在智能农业中,基于计算机视觉的水稻品种检测系统需要用于识别米种子而不是使用技术专家。在本文中,我们研究了三种类型的本地描述符,例如局部二进制模式(LBP),取向梯度(HOG)和GIST的直方图,以表征米种子图像。然而,这种方法提高了维度现象的诅咒,并且需要选择紧凑且更好的表示模型的相关特征。提出了一个新的合奏功能选择来表示从不同单一特征选择方法收集的所有有用信息。实验结果表明了我们在准确性方面的提出方法的效率。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号