...
首页> 外文期刊>Scientific reports. >Mapping thermal conductivity across bamboo cell walls with scanning thermal microscopy
【24h】

Mapping thermal conductivity across bamboo cell walls with scanning thermal microscopy

机译:用扫描热显微镜绘制竹细胞壁上的导热率

获取原文
           

摘要

Scanning thermal microscopy is a powerful tool for investigating biological materials and structures like bamboo and its cell walls. Alongside nanoscale topographical information, the technique reveals local variations in thermal conductivity of this elegant natural material. We observe that at the tissue scale, fibre cells in the scattered vascular tissue would offer preferential pathways for heat transport due to their higher conductivities in both anatomical directions, in comparison to parenchymatic cells in ground tissue. In addition, the transverse orientation offers more resistance to heat flow. Furthermore, we observe each fibre cell to compose of up to ten layers, with alternating thick and thin lamellae in the secondary wall. Notably, we find the thin lamellae to have relatively lower conductivity than the thick lamellae in the fibre direction. This is due to the distinct orientation of cellulose microfibrils within the cell wall layers, and that cellulose microfibrils are highly anisotropic and have higher conductivity along their lengths. Microfibrils in the thick lamellae are oriented almost parallel to the fibre cell axis, while microfibrils in the thin lamellae are oriented almost perpendicular to the cell axis. Bamboo grasses have evolved to rapidly deposit this combination of thick and thin layers, like a polymer composite laminate or cross-laminated timber, for combination of axial and transverse stiffness and strength. However, this architecture is found to have interesting implications on thermal transport in bamboo, which is relevant for the application of engineered bamboo in buildings. We further conclude that scanning thermal microscopy may be a useful technique in plant science research, including for phenotyping studies.
机译:扫描热显微镜是一种强大的工具,用于研究竹子及其细胞壁等生物材料和结构。除了纳米级地形信息,该技术揭示了这种优雅天然材料的导热率的局部变化。我们观察到,在组织尺度,散射血管组织中的纤维细胞将提供优先途径,其由于其两种解剖学方向上的较高导电性而导致热传输,与地面组织中的杀菌细胞相比。此外,横向取向具有更高的热流抵抗力。此外,我们观察到每个纤维细胞以组成多达十个层,其中次壁中的交替厚和薄薄片。值得注意的是,我们发现薄的薄片具有比纤维方向上的厚薄片相对较低的导电性。这是由于细胞壁层内纤维素微纤维的不同取向,并且纤维素微纤维是高度各向异性的并且沿其长度具有更高的导电性。厚薄的薄片中的微纤维几乎平行于纤维电池轴线,而薄薄片中的微纤维几乎垂直于电池轴线定向。竹草已经进化到快速沉积这种厚薄层的这种组合,如聚合物复合层压材料或交叉层压木材,用于轴向和横向刚度和强度的组合。然而,这种架构被发现对竹子的热传输有趣的影响,这与在建筑物中的工程竹子应用相关。我们进一步得出结论,扫描热显微镜可能是植物科学研究中的有用技术,包括表型研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号