首页> 美国卫生研究院文献>Nanomaterials >Scanning Thermal Microscopy of Ultrathin Films: Numerical Studies Regarding Cantilever Displacement Thermal Contact Areas Heat Fluxes and Heat Distribution
【2h】

Scanning Thermal Microscopy of Ultrathin Films: Numerical Studies Regarding Cantilever Displacement Thermal Contact Areas Heat Fluxes and Heat Distribution

机译:超薄薄膜扫描热显微镜:关于悬臂位移热接触区域热通量和热分布的数值研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

New micro- and nanoscale devices require electrically isolating materials with specific thermal properties. One option to characterize these thermal properties is the atomic force microscopy (AFM)-based scanning thermal microscopy (SThM) technique. It enables qualitative mapping of local thermal conductivities of ultrathin films. To fully understand and correctly interpret the results of practical SThM measurements, it is essential to have detailed knowledge about the heat transfer process between the probe and the sample. However, little can be found in the literature so far. Therefore, this work focuses on theoretical SThM studies of ultrathin films with anisotropic thermal properties such as hexagonal boron nitride (h-BN) and compares the results with a bulk silicon (Si) sample. Energy fluxes from the probe to the sample between 0.6 µW and 126.8 µW are found for different cases with a tip radius of approximately 300 nm. A present thermal interface resistance (TIR) between bulk Si and ultrathin h-BN on top can fully suppress a further heat penetration. The time until heat propagation within the sample is stationary is found to be below 1 µs, which may justify higher tip velocities in practical SThM investigations of up to 20 µms−1. It is also demonstrated that there is almost no influence of convection and radiation, whereas a possible TIR between probe and sample must be considered.
机译:新型微型和纳米级装置需要电隔离材料,具有特定的热性能。表征这些热性质的一种选择是基于原子力显微镜(AFM)的基于扫描热显微镜(STHM)技术。它能够定性映射超本膜的局部热导体。为了完全理解并正确地解释实用的STHM测量结果,必须具备关于探针和样品之间的传热过程的详细知识。但是,到目前为止,在文献中可以找到很少。因此,该工作侧重于具有各向异性热性质如六边形氮化硼(H-Bn)的超薄膜的理论STHM研究,并将结果与​​散装硅(Si)样品进行比较。从尖端半径约为300nm的不同情况下发现从探针到0.6μW和126.8μW之间的样品的能量通量。在顶部的散装Si和超薄H-Bn之间的本热界面电阻(TIR)可以完全抑制进一步的热渗透。在样品内的热传播的时间是静止的时间低于1μs,这可以证明高达20μms-1的实际STHM调查中的更高尖端速度。还证明了对流和辐射几乎没有影响,而必须考虑探针和样品之间的可能TIR。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号