首页> 外文期刊>Scientific reports. >Gate Tuning of Synaptic Functions Based on Oxygen Vacancy Distribution Control in Four-Terminal TiO2?x Memristive Devices
【24h】

Gate Tuning of Synaptic Functions Based on Oxygen Vacancy Distribution Control in Four-Terminal TiO2?x Memristive Devices

机译:基于氧气空位分布控制的四端子TiO2的突触功能门调谐?X Memristive Devices

获取原文
       

摘要

Recent developments in artificial intelligence technology has facilitated advances in neuromorphic computing. Electrical elements mimicking the role of synapses are crucial building blocks for neuromorphic computers. Although various types of two-terminal memristive devices have emerged in the mainstream of synaptic devices, a hetero-synaptic artificial synapse, i.e., one with modulatable plasticity induced by multiple connections of synapses, is intriguing. Here, a synaptic device with tunable synapse plasticity is presented that is based on a simple four-terminal rutile TiOsub2-x/sub single-crystal memristor. In this device, the oxygen vacancy distribution in TiOsub2-x/sub and the associated bulk carrier conduction can be used to control the resistance of the device. There are two diagonally arranged pairs of electrodes with distinct functions: one for the read/write operation, the other for the gating operation. This arrangement enables precise control of the oxygen vacancy distribution. Microscopic analysis of the Ti valence states in the device reveals the origin of resistance switching phenomena to be an electrically driven redistribution of oxygen vacancies with no changes in crystal structure. Tuning protocols for the write and the gate voltage applications enable high precision control of resistance, or synaptic plasticity, paving the way for the manipulation of learning efficiency through neuromorphic devices.
机译:最近人工智能技术的发展促进了神经形态计算的进步。模仿突触角色的电气元件是神经形态计算机的重要组建块。尽管在突触装置的主流中出现了各种类型的双端子椎间膜器件,但是杂交突触人工突触,即由多个突触连接诱导的可调节塑性的杂志,是有趣的。这里,提出了一种具有可调谐突触可塑性的突触装置,其基于简单的四端子金红石TiO 2-x 单晶映射器。在该装置中,可以使用TiO 2-X / Sub>中的氧空位分布和相关的散装载体传导来控制装置的电阻。有两个对角布置的电极对具有不同的功能:一个用于读/写操作,另一个用于门控操作。这种布置能够精确控制氧空位分布。器件中的Ti价态的显微镜分析揭示了电阻切换现象的起源,其是氧空位的电驱动再分布,晶体结构没有变化。用于写入和栅极电压应用的调谐协议使得能够高精度控制电阻或突触可塑性,铺平通过神经栓理设备操纵学习效率的方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号