首页> 外文期刊>Journal of bacteriology >Diverse Energy-Conserving Pathways in Clostridium difficile: Growth in the Absence of Amino Acid Stickland Acceptors and the Role of the Wood-Ljungdahl Pathway
【24h】

Diverse Energy-Conserving Pathways in Clostridium difficile: Growth in the Absence of Amino Acid Stickland Acceptors and the Role of the Wood-Ljungdahl Pathway

机译:艰难梭菌的不同节能途径:缺乏氨基酸棒受体的生长和木质Ljungdahl途径的作用

获取原文
           

摘要

Clostridium difficile is the leading cause of hospital-acquired antibiotic-associated diarrhea and is the only widespread human pathogen that contains a complete set of genes encoding the Wood-Ljungdahl pathway (WLP). In acetogenic bacteria, synthesis of acetate from 2 CO_(2) molecules by the WLP functions as a terminal electron accepting pathway; however, C. difficile contains various other reductive pathways, including a heavy reliance on Stickland reactions, which questions the role of the WLP in this bacterium. In rich medium containing high levels of electron acceptor substrates, only trace levels of key WLP enzymes were found; therefore, conditions were developed to adapt C. difficile to grow in the absence of amino acid Stickland acceptors. Growth conditions were identified that produce the highest levels of WLP activity, determined by Western blot analyses of the central component acetyl coenzyme A synthase (AcsB) and assays of other WLP enzymes. Fermentation substrate and product analyses, enzyme assays of cell extracts, and characterization of a Δ acsB mutant demonstrated that the WLP functions to dispose of metabolically generated reducing equivalents. While WLP activity in C. difficile does not reach the levels seen in classical acetogens, coupling of the WLP to butyrate formation provides a highly efficient system for regeneration of NAD~(+) “acetobutyrogenesis,” requiring only low flux through the pathways to support efficient ATP production from glucose oxidation. Additional insights redefine the amino acid requirements in C. difficile, explore the relationship of the WLP to toxin production, and provide a rationale for colocalization of genes involved in glycine synthesis and cleavage within the WLP operon. IMPORTANCE Clostridium difficile is an anaerobic, multidrug-resistant, toxin-producing pathogen with major health impacts worldwide. It is the only widespread pathogen harboring a complete set of Wood-Ljungdahl pathway (WLP) genes; however, the role of the WLP in C. difficile is poorly understood. In other anaerobic bacteria and archaea, the WLP can operate in one direction to convert CO_(2) to acetic acid for biosynthesis or in either direction for energy conservation. Here, conditions are defined in which WLP levels in C. difficile increase markedly, functioning to support metabolism of carbohydrates. Amino acid nutritional requirements were better defined, with new insight into how the WLP and butyrate pathways act in concert, contributing significantly to energy metabolism by a mechanism that may have broad physiological significance within the group of nonclassical acetogens.
机译:Clostridium艰难术是医院获得的抗生素相关腹泻的主要原因,是唯一含有编码木质Ljungdahl途径(WLP)的一整套基因的唯一普遍的人道病原体。在醋酸醋酸乙酸中,通过WLP用2CO_(2)分子合成乙酸酯作为末端电子接受途径;然而,C.艰难率含有各种其他还原途径,包括对棒状反应的沉重依赖,这对WLP在这种细菌中的作用问题。在含有高水平的电子受体底物的富含培养基中,发现仅发现痕量的关键WLP酶;因此,开发了条件以适应艰难梭菌以在没有氨基酸棒受体的情况下生长。确定生长条件,其产生最高水平的WLP活性,通过中央组分乙酰辅酶A合成酶(ACSB)和其他WLP酶的测定来确定。发酵底物和产物分析,细胞提取物的酶测定,以及δAcsb突变体的表征证明了WLP致力于处理代谢产生的还原等同物。虽然C.艰难梭菌的WLP活性没有达到经典醋Etgens中所见的水平,但WLP丁酸酯形成的偶联为NAD〜(+)“乙酰丁酯的再生提供了一种高效的系统,”通过途径仅需要低通量“高效的ATP产生葡萄糖氧化。额外的见解重新定义了C.艰难梭菌的氨基酸要求,探讨了WLP与毒素生产的关系,并提供了参与WLP操纵子内甘氨酸合成和切割的基因的基因的基本化的理由。重要性梭菌差异是一种厌氧,多药抗性,毒素的毒素,产生全球健康影响的产病。它是唯一含有一整套木质Ljungdahl途径(WLP)基因的广泛病原体;然而,WLP在C. Indicile中的作用很差。在其他厌氧细菌和古亚孔中,WLP可以在一个方向上操作以将CO_(2)转换为生物合成的乙酸或在任一方向上进行节能。这里,定义条件,其中C.艰难梭菌的WLP水平显着增加,其功能支持碳水化合物的代谢。氨基酸营养需求更好地定义,具有新的洞察力,对WLP和丁酸盐途径如何在音乐会中行动,通过可能在非繁殖乙酸碱组内具有广泛生理意义的机制显着促进能量代谢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号