首页> 外文期刊>The Journal of biological chemistry >Studies of the Genetics, Function, and Kinetic Mechanism of TagE, the Wall Teichoic Acid Glycosyltransferase in Bacillus subtilis 168
【24h】

Studies of the Genetics, Function, and Kinetic Mechanism of TagE, the Wall Teichoic Acid Glycosyltransferase in Bacillus subtilis 168

机译:芽孢杆菌亚硝基甲酸糖基转移酶的遗传学,功能和动力学机制研究,枯草芽孢杆菌168

获取原文
获取外文期刊封面目录资料

摘要

The biosynthetic enzymes involved in wall teichoic acid biogenesis in Gram-positive bacteria have been the subject of renewed investigation in recent years with the benefit of modern tools of biochemistry and genetics. Nevertheless, there have been only limited investigations into the enzymes that glycosylate wall teichoic acid. Decades-old experiments in the model Gram-positive bacterium, Bacillus subtilis 168, using phage-resistant mutants implicated tagE (also called gtaA and rodD) as the gene coding for the wall teichoic acid glycosyltransferase. This study and others have provided only indirect evidence to support a role for TagE in wall teichoic acid glycosylation. In this work, we showed that deletion of tagE resulted in the loss of α-glucose at the C-2 position of glycerol in the poly(glycerol phosphate) polymer backbone. We also reported the first kinetic characterization of pure, recombinant wall teichoic acid glycosyltransferase using clean synthetic substrates. We investigated the substrate specificity of TagE using a wide variety of acceptor substrates and found that the enzyme had a strong kinetic preference for the transfer of glucose from UDP-glucose to glycerol phosphate in polymeric form. Further, we showed that the enzyme recognized its polymeric (and repetitive) substrate with a sequential kinetic mechanism. This work provides direct evidence that TagE is the wall teichoic acid glycosyltransferase in B. subtilis 168 and provides a strong basis for further studies of the mechanism of wall teichoic acid glycosylation, a largely uncharted aspect of wall teichoic acid biogenesis.
机译:在革兰氏阳性细菌中涉及壁噻吩酸生物发生的生物合成酶一直是近年来近年来重新调查的主题,其利用现代化的生物化学和遗传学工具。然而,只有有限的研究进入糖基壁噻吩酸的酶。数十年历史在模型革兰氏阳性细菌中的实验,枯草芽孢杆菌168,使用噬菌体抗突变体涉及曲线(也称为GTAA和RODD)作为编码壁噻吩酸糖基转移酶的基因。本研究和其他人只提供了间接证据,以支持壁噻吩酸糖基化的造成的作用。在这项工作中,我们表明,缺失杆的损失导致甘油在聚(甘油磷酸盐)聚合物主链中的甘油的C-2位置处的α-葡萄糖的损失。我们还报道了使用清洁合成基材的纯重组壁噻吩酸糖基转移酶的第一种动力学表征。我们使用各种受体底物研究了底板的底物特异性,发现酶具有强烈的动力学偏好,用于将葡萄糖从UDP-葡萄糖转移到聚合物形式中的甘油磷酸盐。此外,我们表明该酶以顺序动力学机构识别其聚合物(和重复)底物。这项工作提供了直接证据,即Tage是B.枯草芽孢杆菌168中的壁噻吩酸糖基转移酶,为进一步研究壁噻吩酸糖基化机制,壁噻吩基酸生物发生的大部分未明确的方面提供了强的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号