...
首页> 外文期刊>The Journal of biological chemistry >Eukaryotic Class II Cyclobutane Pyrimidine Dimer Photolyase Structure Reveals Basis for Improved Ultraviolet Tolerance in Plants
【24h】

Eukaryotic Class II Cyclobutane Pyrimidine Dimer Photolyase Structure Reveals Basis for Improved Ultraviolet Tolerance in Plants

机译:真核醛醛酰丁烷嘧啶二聚体光解酶结构显示出改善植物紫外耐受性的基础

获取原文

摘要

Ozone depletion increases terrestrial solar ultraviolet B (UV-B; 280–315 nm) radiation, intensifying the risks plants face from DNA damage, especially covalent cyclobutane pyrimidine dimers (CPD). Without efficient repair, UV-B destroys genetic integrity, but plant breeding creates rice cultivars with more robust photolyase (PHR) DNA repair activity as an environmental adaptation. So improved strains of Oryza sativa (rice), the staple food for Asia, have expanded rice cultivation worldwide. Efficient light-driven PHR enzymes restore normal pyrimidines to UV-damaged DNA by using blue light via flavin adenine dinucleotide to break pyrimidine dimers. Eukaryotes duplicated the photolyase gene, producing PHRs that gained functions and adopted activities that are distinct from those of prokaryotic PHRs yet are incompletely understood. Many multicellular organisms have two types of PHR: (6-4) PHR, which structurally resembles bacterial CPD PHRs but recognizes different substrates, and Class II CPD PHR, which is remarkably dissimilar in sequence from bacterial PHRs despite their common substrate. To understand the enigmatic DNA repair mechanisms of PHRs in eukaryotic cells, we determined the first crystal structure of a eukaryotic Class II CPD PHR from the rice cultivar Sasanishiki. Our 1.7 ? resolution PHR structure reveals structure-activity relationships in Class II PHRs and tuning for enhanced UV tolerance in plants. Structural comparisons with prokaryotic Class I CPD PHRs identified differences in the binding site for UV-damaged DNA substrate. Convergent evolution of both flavin hydrogen bonding and a Trp electron transfer pathway establish these as critical functional features for PHRs. These results provide a paradigm for light-dependent DNA repair in higher organisms.
机译:臭氧耗尽增加了陆地太阳能紫外线B(UV-B; 280-315纳米)辐射,加强了从DNA损伤的风险植物面部,特别是共价环丁嘧啶二聚体(CPD)。没有有效的修复,UV-B破坏了遗传完整性,但植物育种会产生更强大的光聚酶(PHR)DNA修复活动作为环境适应的水稻品种。因此,改善了亚洲苜蓿(米饭),亚洲主食的菌株,在全球范围内扩大了水稻种植。高效的光驱动的PHR酶通过使用Flavin腺嘌呤二核苷酸来破坏嘧啶二聚体的蓝光来恢复正常嘧啶到UV受损的DNA。真核生物复制了光聚酶基因,产生了所获得的职能和采用与原核不妥的那些不同的活动的关联,尚未完全理解。许多多细胞生物具有两种类型的PHR:(6-4)PHR,其在结构上类似于细菌CPD(但识别不同的底物),并且II类CPD PHR,尽管它们具有共同的基质,其序列是显着的序列中的显着异常。为了了解诸如真核细胞中PHRS的神秘DNA修复机制,我们确定了来自水稻品种Sasanishiki的真核生物二级CPD PHR的第一晶体结构。我们的1.7?分辨率PHR结构揭示了II类关联的结构 - 活性关系,并在植物中提高UV耐受性的调整。具有原核等级I CPD PHR的结构比较鉴定了UV受损DNA底物的结合位点的差异。两种黄素氢键的收敛演变和TRP电子转移途径建立了这些作为关键功能特征。这些结果提供了在较高生物中的轻依赖性DNA修复的范例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号