...
首页> 外文期刊>Scientific reports. >Dynamics of the ACE2–SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms
【24h】

Dynamics of the ACE2–SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms

机译:ACE2-SARS-COV-2 / SARS-COV尖峰蛋白界面的动态揭示了独特的机制

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major public health concern. A handful of static structures now provide molecular insights into how SARS-CoV-2 and SARS-CoV interact with its host target, which is the angiotensin converting enzyme 2 (ACE2). Molecular recognition, binding and function are dynamic processes. To evaluate this, multiple 500?ns or 1?μs all-atom molecular dynamics simulations were performed to better understand the structural stability and interfacial interactions between the receptor binding domain of the spike (S) protein of SARS-CoV-2 and SARS-CoV bound to ACE2. Several contacts were observed to form, break and reform in the interface during the simulations. Our results indicate that SARS-CoV-2 and SARS-CoV utilizes unique strategies to achieve stable binding to ACE2. Several differences were observed between the residues of SARS-CoV-2 and SARS-CoV that consistently interacted with ACE2. Notably, a stable salt bridge between Lys417 of SARS-CoV-2 S protein and Asp30 of ACE2 as well as three stable hydrogen bonds between Tyr449, Gln493 and Gln498 of SARS-CoV-2 and Asp38, Glu35 and Lys353 of ACE2 were observed, which were absent in the ACE2–SARS-CoV interface. Some previously reported residues, which were suggested to enhance the binding affinity of SARS-CoV-2, were not observed to form stable interactions in these simulations. Molecular mechanics-generalized Born surface area based free energy of binding was observed to be higher for SARS-CoV-2 in all simulations. Stable binding to the host receptor is crucial for virus entry. Therefore, special consideration should be given to these stable interactions while designing potential drugs and treatment modalities to target or disrupt this interface.
机译:2019年(Covid-19)大流行,由严重急性呼吸综合征冠状病毒2(SARS-COV-2)引起的,是一个主要的公共卫生问题。少数静态结构现在提供了SARS-COV-2和SARS-COV如何与其宿主靶相互作用的分子见解,这是血管紧张素转换酶2(ACE2)。分子识别,绑定和功能是动态过程。为了评估这一点,进行多个500?NS或1?μs全原子分子动力学模拟,以更好地了解SARS-COV-2和SARS的尖峰蛋白的受体结合结构域之间的结构稳定性和界面相互作用 - COV与ACE2结合。观察到几种触点在模拟期间在界面中形成,破坏和改革。我们的结果表明,SARS-COV-2和SARS-COV利用独特的策略来实现与ACE2的稳定结合。在持续与ACE2持续相互作用的SARS-COV-2和SARS-COV的残基之间观察到几种差异。值得注意的是,观察到SARS-COV-2 S蛋白的Lys417之间的稳定盐桥和Ace2的Asce2的三种稳定的氢键,ace2的SARS-COV-2和ASP38,Glu35和Lys353之间的三种稳定的氢键,这在ACE2-SARS-COV界面中不存在。有些先前报道的残留物,该残基被认为未观察到SARS-COV-2的结合亲和力,以形成这些模拟中的稳定相互作用。在所有模拟中,观察到SARS-COV-2的基于分子机制的无结合的自由能量。与宿主受体的稳定结合对于病毒进入至关重要。因此,应特别考虑这些稳定的相互作用,同时设计潜在的药物和治疗方式来瞄准或扰乱该界面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号