首页> 外文期刊>Frontiers in Molecular Biosciences >Spike Proteins of SARS-CoV and SARS-CoV-2 Utilize Different Mechanisms to Bind With Human ACE2
【24h】

Spike Proteins of SARS-CoV and SARS-CoV-2 Utilize Different Mechanisms to Bind With Human ACE2

机译:SARS-COV和SARS-COV-2的尖峰蛋白利用不同的机制与人ACE2结合

获取原文
       

摘要

The ongoing outbreak of COVID-19 has been a serious threat to human health worldwide. The virus SARS-CoV-2 initiates its infection to the human body via the interaction of its spike (S) protein with the human Angiotensin-Converting Enzyme 2 (ACE2) of the host cells. Therefore, understanding the fundamental mechanisms of how SARS-CoV-2 S protein receptor binding domain (RBD) binds to ACE2 is highly demanded for developing treatments for COVID-19. Here we implemented multi-scale computational approaches to study the binding mechanisms of human ACE2 and S proteins of both SARS-CoV and SARS-CoV-2. Electrostatic features, including electrostatic potential, electric field lines and electrostatic forces of SARS-CoV and SARS-CoV-2 were calculated and compared in detail. The results demonstrate that SARS-CoV and SARS-CoV-2 S proteins are both attractive to ACE2 by electrostatic forces even at different distances. However, the residues contributing to the electrostatic features are quite different due to the mutations between SARS-CoV S protein and SARS-CoV-2 S protein. Such differences are analyzed comprehensively. Compared to SARS-CoV, the SARS-CoV-2 binds with ACE2 using a more robust strategy: The electric field line related residues are distributed quite differently, which results in a more robust binding strategy of SARS-CoV-2. Also, SARS-CoV-2 has a higher electric field line density than that of SARS-CoV, which indicates stronger interaction between SARS-CoV-2 and ACE2, compared to that of SARS-CoV. Key residues involved in salt bridges and hydrogen bonds are identified in this study, which may help the future drug design against COVID-19.
机译:Covid-19正在进行的爆发是全世界对人类健康的严重威胁。病毒SARS-COV-2通过与宿主细胞的人血管紧张素转换酶2(ACE2)相互作用,引发其对人体的感染。因此,了解SARS-COV-2 S蛋白受体结合结构域(RBD)与ACE2结合的基本机制是对Covid-19的治疗产生的。在这里,我们实施了多规模的计算方法,以研究SARS-COV和SARS-COV-2的人ACE2和S蛋白的结合机制。计算静电特征,包括SARS-COV和SARS-COV-2的静电电位,电场线和静电力。结果表明,即使在不同的距离下,SARS-COV和SARS-COV-2S蛋白也可以通过静电力对ACE2具有吸引力。然而,由于SARS-COV S蛋白和SARS-COV-2S蛋白质之间的突变,对静电特征有贡献的残余物是非常不同的。全面分析这种差异。与SARS-COV相比,SARS-COV-2使用更强大的策略与ACE2结合:电场线相关残留物分布得非常不同,这导致SARS-COV-2的更强大的结合策略。此外,与SARS-COV相比,SARS-COV-2具有比SARS-COV的电场线密度更高的电场线密度,这表明SARS-COV-2和ACE2之间的相互作用更强。在本研究中鉴定了盐桥和氢键的关键残留物,这可能有助于对Covid-19的未来药物设计。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号