首页> 外文期刊>International Journal of Molecular Sciences >SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus–Host Interaction
【24h】

SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus–Host Interaction

机译:SARS-COV-2对病毒 - 宿主相互作用中受体O-乙酰唾液酸宿主的进化适应性和识别

获取原文
           

摘要

The recently emerged SARS-CoV-2 is the cause of the global health crisis of the coronavirus disease 2019 (COVID-19) pandemic. No evidence is yet available for CoV infection into hosts upon zoonotic disease outbreak, although the CoV epidemy resembles influenza viruses, which use sialic acid (SA). Currently, information on SARS-CoV-2 and its receptors is limited. O-acetylated SAs interact with the lectin-like spike glycoprotein of SARS CoV-2 for the initial attachment of viruses to enter into the host cells. SARS-CoV-2 hemagglutinin-esterase (HE) acts as the classical glycan-binding lectin and receptor-degrading enzyme. Most β-CoVs recognize 9- O -acetyl-SAs but switched to recognizing the 4- O -acetyl-SA form during evolution of CoVs. Type I HE is specific for the 9- O -Ac-SAs and type II HE is specific for 4- O -Ac-SAs. The SA-binding shift proceeds through quasi-synchronous adaptations of the SA-recognition sites of the lectin and esterase domains. The molecular switching of HE acquisition of 4- O -acetyl binding from 9- O -acetyl SA binding is caused by protein–carbohydrate interaction (PCI) or lectin–carbohydrate interaction (LCI). The HE gene was transmitted to a β-CoV lineage A progenitor by horizontal gene transfer from a 9- O -Ac-SA–specific HEF, as in influenza virus C/D. HE acquisition, and expansion takes place by cross-species transmission over HE evolution. This reflects viral evolutionary adaptation to host SA-containing glycans. Therefore, CoV HE receptor switching precedes virus evolution driven by the SA-glycan diversity of the hosts. The PCI or LCI stereochemistry potentiates the SA–ligand switch by a simple conformational shift of the lectin and esterase domains. Therefore, examination of new emerging viruses can lead to better understanding of virus evolution toward transitional host tropism. A clear example of HE gene transfer is found in the BCoV HE, which prefers 7,9-di- O -Ac-SAs, which is also known to be a target of the bovine torovirus HE. A more exciting case of such a switching event occurs in the murine CoVs, with the example of the β-CoV lineage A type binding with two different subtypes of the typical 9- O -Ac-SA (type I) and the exclusive 4- O -Ac-SA (type II) attachment factors. The protein structure data for type II HE also imply the virus switching to binding 4-O acetyl SA from 9-O acetyl SA. Principles of the protein–glycan interaction and PCI stereochemistry potentiate the SA–ligand switch via simple conformational shifts of the lectin and esterase domains. Thus, our understanding of natural adaptation can be specified to how carbohydrate/glycan-recognizing proteins/molecules contribute to virus evolution toward host tropism. Under the current circumstances where reliable antiviral therapeutics or vaccination tools are lacking, several trials are underway to examine viral agents. As expected, structural and non-structural proteins of SARS-CoV-2 are currently being targeted for viral therapeutic designation and development. However, the modern global society needs SARS-CoV-2 preventive and therapeutic drugs for infected patients. In this review, the structure and sialobiology of SARS-CoV-2 are discussed in order to encourage and activate public research on glycan-specific interaction-based drug creation in the near future.
机译:最近出现的SARS-COV-2是2019年冠状病毒疾病的全球健康危机的原因(Covid-19)大流行。虽然COV ePIDEMY类似于使用唾液酸(SA)的COV ePIDEMY,但没有证据表明COV感染进入宿主。目前,关于SARS-COV-2及其受体的信息有限。 O-乙酰化SAS与SARS COV-2的凝集素样穗糖蛋白相互作用,用于初始附着病毒进入宿主细胞。 SARS-COV-2血血糖素 - 酯酶(HE)用作典型的聚糖结合凝集素和受体降解酶。大多数β-CoV识别9-O-乙酰-SAS,但切换以识别COV的演化期间的4-O-乙酰基-A形式。 I型他是针对9-O-ac-SAS和II型的特定于4-O-CAC-SAS。 SA结合移位通过凝集素和酯酶结构域的SA识别位点的准同步调整进行。他采集4-乙酰SA结合的4-O-乙酰结合的分子切换是由蛋白质 - 碳水化合物相互作用(PCI)或凝集素 - 碳水化合物相互作用(LCI)引起的。通过从9-O-ac-SA特异性HEF的水平基因转移,将HE基因传递给β-CoV血管祖祖,如流感病毒C / D。他收购,并通过跨物种传播在进化中进行扩张。这反映了对宿主SA的聚糖的病毒进化适应。因此,COV HE受体通过宿主的SA-Glycan多样性转换前面的病毒演进。 PCI或LCI立体化学通过凝集素和酯酶结构域的简单构象偏移使SA-LigAnd开关增强。因此,对新兴病毒的检查可能导致更好地了解转向过渡宿主的转化病毒进化。在Bcov He中发现了他基因转移的一个明确的例子,其更喜欢7,9-二o-ac-sas,这也已知是牛托洛病毒的靶标。在鼠COV中发生这种切换事件的更令人兴奋的情况,其中β-CoV谱系的示例是与典型的9-O -AC-SA(I型)的两种不同亚型的类型结合和独占4- O -AC-SA(II型)附件因子。 II型蛋白质结构数据他还暗示了从9-O乙酰基的结合4-O乙酰基的病毒切换。蛋白质 - 聚糖相互作用和PCI立体化学的原理通过凝集素和酯酶结构域的简单构象偏移使SA-LigAnd开关增强。因此,我们对天然适应的理解可以指定碳水化合物/聚糖识别蛋白质/分子如何对宿主的热性有助于病毒演化。在目前的情况下,缺乏可靠的抗病毒治疗或疫苗接种工具,正在进行几种试验来检查病毒剂。正如预期的那样,SARS-COV-2的结构和非结构蛋白目前正在靶向病毒治疗性指定和发育。然而,现代全球社会需要SARS-COV-2用于感染患者的预防性和治疗药物。在本次综述中,讨论了SARS-COV-2的结构和唾液管学,以鼓励和激活在不久的将来对基于Glycan特异性互动的药物创造的公众研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号