首页> 外文期刊>Journal of applied clinical medical physics / >Deep convolutional neural networks for automatic segmentation of thoracic organs‐at‐risk in radiation oncology – use of non‐domain transfer learning
【24h】

Deep convolutional neural networks for automatic segmentation of thoracic organs‐at‐risk in radiation oncology – use of non‐domain transfer learning

机译:深度卷积神经网络,用于胸内肿瘤内肿瘤的自动分割 - 非域转移学习的使用

获取原文
           

摘要

Purpose Segmentation of organs‐at‐risk (OARs) is an essential component of the radiation oncology workflow. Commonly segmented thoracic OARs include the heart, esophagus, spinal cord, and lungs. This study evaluated a convolutional neural network (CNN) for automatic segmentation of these OARs. Methods The dataset was created retrospectively from consecutive radiotherapy plans containing all five OARs of interest, including 22,411 CT slices from 168 patients. Patients were divided into training, validation, and test datasets according to a 66%/17%/17% split. We trained a modified U‐Net, applying transfer learning from a VGG16 image classification model trained on ImageNet. The Dice coefficient and 95% Hausdorff distance on the test set for each organ was compared to a commercial atlas‐based segmentation model using the Wilcoxon signed‐rank test. Results On the test dataset, the median Dice coefficients for the CNN model vs. the multi‐atlas model were 71% vs. 67% for the spinal cord, 96% vs. 94% for the right lung, 96%vs. 94% for the left lung, 91% vs. 85% for the heart, and 63% vs. 37% for the esophagus. The median 95% Hausdorff distances were 9.5 mm vs. 25.3?mm, 5.1 mm vs. 8.1?mm, 4.0 mm vs. 8.0?mm, 9.8 mm vs. 15.8?mm, and 9.2?mm vs. 20.0?mm for the respective organs. The results all favored the CNN model ( P ?0.05). Conclusions A 2D CNN can achieve superior results to commercial atlas‐based software for OAR segmentation utilizing non‐domain transfer learning, which has potential utility for quality assurance and expediting patient care.
机译:器官风险(OAR)的目的分割是放射肿瘤学工作流程的重要组成部分。通常分段的胸桨包括心脏,食道,脊髓和肺。本研究评估了卷积神经网络(CNN),用于自动分割这些桨。方法采用数据集从包含所有五个桨户的连续放射治疗计划创建,包括168名患者的22,411个CT切片。患者分为训练,验证和测试数据集,根据66%/ 17%/ 17%分裂。我们培训了修改过的U-Net,从VGG16图像分类模型应用转移学习,在想象中培训。将骰子系数和95%Hausdorff距离每个器官的测试集合与使用Wilcoxon签名秩检验的基于商业地图集的分段模型进行比较。结果在测试数据集上,CNN模型的中值骰子系数与脊髓的多纳瓦型模型为71%,右肺96%对94%,96%Vs。左肺94%,心脏91%vs.85%,食道率为63%。中位数95%Hausdorff距离为9.5毫米,5.3毫米,5.1mm与8.1Ω·mm,4.0 mm与8.0?mm,9.8 mm与15.8Ωmm,9.2Ω·mm与20.0?mm各自的器官。结果全部都赞成CNN模型(P <0.05)。结论A 2D CNN可以利用非领域转移学习对OAR分割的基于商业地图集的软件来实现优异的结果,这具有潜在的质量保证和加速患者护理的潜在用途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号