...
首页> 外文期刊>JMLR: Workshop and Conference Proceedings >Semi-bandit Optimization in the Dispersed Setting
【24h】

Semi-bandit Optimization in the Dispersed Setting

机译:分散设置中的半燃烧优化

获取原文
           

摘要

The goal of data-driven algorithm design is to obtain high-performing algorithms for specific application domains using machine learning and data. Across many fields in AI, science, and engineering, practitioners will often fix a family of parameterized algorithms and then optimize those parameters to obtain good performance on example instances from the application domain. In the online setting, we must choose algorithm parameters for each instance as they arrive, and our goal is to be competitive with the best fixed algorithm in hindsight.There are two major challenges in online data-driven algorithm design. First, it can be computationally expensive to evaluate the loss functions that map algorithm parameters to performance, which often require the learner to run a combinatorial algorithm to measure its performance. Second, the losses can be extremely volatile and have sharp discontinuities. However, we show that in many applications, evaluating the loss function for one algorithm choice can sometimes reveal the loss for a range of similar algorithms, essentially for free. We develop online optimization algorithms capable of using this kind of extra information by working in the semi-bandit feedback setting. Our algorithms achieve regret bounds that are essentially as good as algorithms under full-information feedback and are significantly more computationally efficient. We apply our semi-bandit results to obtain the first provable guarantees for data-driven algorithm design for linkage-based clustering and we improve the best regret bounds for designing greedy knapsack algorithms.
机译:数据驱动算法设计的目标是使用机器学习和数据获得特定应用域的高性能算法。在AI,科学和工程中的许多领域,从业者通常会修复一个参数化算法的系列,然后优化这些参数,以获得来自应用程序域的示例实例的良好性能。在在线设置中,我们必须为每个实例选择算法参数,因为他们到达时,我们的目标是与后敏的最佳固定算法竞争。在线数据驱动算法设计中是两个主要挑战。首先,可以计算昂贵的昂贵,以评估将算法参数映射到性能的损耗功能,这通常要求学习者运行组合算法来测量其性能。其次,损失可能是极其挥发性的并且具有急剧的不连续性。然而,我们显示在许多应用中,评估一个算法选择的损失函数有时可以揭示一系列类似算法的损失,基本上是免费的。我们通过在半燃点反馈设置中工作,开发能够使用此类额外信息的在线优化算法。我们的算法实现了遗憾的界限,基本上与全信息反馈下的算法一样好,并且具有显着的计算效率。我们应用了Semi-Bainit结果,以获得用于基于链接的群集的数据驱动算法设计的第一个可提供的保证,我们提高了设计贪婪背包算法的最佳遗憾范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号