...
首页> 外文期刊>JMLR: Workshop and Conference Proceedings >Learning Polynomials in Few Relevant Dimensions
【24h】

Learning Polynomials in Few Relevant Dimensions

机译:在少数相关尺寸中学习多项式

获取原文
           

摘要

Polynomial regression is a basic primitive in learning and statistics. In its most basic form the goal is to fit a degree $d$ polynomial to a response variable $y$ in terms of an $n$-dimensional input vector $x$. This is extremely well-studied with many applications and has sample and runtime complexity $Theta(n^d)$. Can one achieve better runtime if the intrinsic dimension of the data is much smaller than the ambient dimension $n$? Concretely, we are given samples $(x,y)$ where $y$ is a degree at most $d$ polynomial in an unknown $r$-dimensional projection (the relevant dimensions) of $x$. This can be seen both as a generalization of phase retrieval and as a special case of learning multi-index models where the link function is an unknown low-degree polynomial. Note that without distributional assumptions, this is at least as hard as junta learning. In this work we consider the important case where the covariates are Gaussian. We give an algorithm that learns the polynomial within accuracy $epsilon$ with sample complexity that is roughly $N = O_{r,d}(n log^2(1/epsilon) (log n)^d)$ and runtime $O_{r,d}(N n^2)$. Prior to our work, no such results were known even for the case of $r=1$. We introduce a new emph{filtered PCA} approach to get a warm start for the true subspace and use emph{geodesic SGD} to boost to arbitrary accuracy; our techniques may be of independent interest, especially for problems dealing with subspace recovery or analyzing SGD on manifolds.
机译:多项式回归是学习和统计中的基本原始。在最基本的形式中,目标是将D $多项式适合响应变量$ Y $ y $ n $ -dimensional输入向量$ x $。这对许多应用程序来说是非常好的,并且具有样本和运行时复杂度$ theta(n ^ d)$。如果数据的内在维度远小于环境维度$ N $?具体地,我们给出了样品$(x,y)$,其中$ y $是最多$ d $多项式的程度,以$ x $的未知$ r $ -dimensional投影(相关维度)。这可以看作是相位检索的概括和作为学习的多索引模型的特殊情况,其中链接功能是未知的低程度多项式。请注意,没有分布假设,这至少与Junta学习一样困难。在这项工作中,我们考虑了协调因子是高斯的重要案例。我们给出了一种算法,它在精度$ epsilon $内学习多项式,并使用大致$ n = o_ {r,d}(n log ^ 2(1 / epsilon)( log n)^ d)$的示例复杂性和运行时$ o_ {r,d}(n n ^ 2)$。在我们的工作之前,即使是$ r = 1 $的情况,也没有知道这种结果。我们介绍了一种新的 emph {过滤的PCA}方法来获得真正子空间的热门开始,并使用 emph {GeodeSic SGD}来提升任意精度;我们的技术可能是独立的兴趣,尤其是对处理子空间恢复或分析歧管的SGD问题的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号