...
首页> 外文期刊>PLoS Computational Biology >Vector genetics, insecticide resistance and gene drives An agent-based modeling approach to evaluate malaria transmission and elimination
【24h】

Vector genetics, insecticide resistance and gene drives An agent-based modeling approach to evaluate malaria transmission and elimination

机译:载体遗传学,杀虫剂抗性和基因驱动基于代理的模拟方法来评估疟疾传输和消除

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Vector control interventions are essential to the success of global malaria control and elimination efforts but increasing insecticide resistance worldwide threatens to derail these efforts. Releasing genetically modified mosquitoes that use gene drives to pass on desired genes and their associated phenotypic traits to the entire population within a few generations has been proposed to address resistance and other issues such as transmission heterogeneity that can sustain malaria transmission indefinitely. While the ethics and safety of these methods are being debated, mathematical models offer an efficient way of predicting the behavior and estimating the efficacy of these interventions if deployed to specific regions facing challenges to reaching elimination. We have developed a detailed mathematical model of vector genetics where specific genomes code for physical attributes that influence transmission and are affected by the surrounding environment. This is the first model to incorporate an individual-based multi-locus genetic model into a detailed individual-based model of malaria transmission. This model opens the door to investigate a number of subtle but important questions such as the effects of small numbers of mosquitoes in a region sustaining malaria transmission during the low transmission season, and the success of gene drives in regions where extant vector control interventions could kill off gene drive mosquitoes before establishment. Here, we investigate the reduced efficacy of current vector control measures in the presence of insecticide resistance and evaluate the likelihood of achieving local malaria elimination using gene drive mosquitoes released into a high transmission setting alongside other vector control measures.
机译:矢量控制干预对于全球疟疾控制和消除努力的成功至关重要,但在全球范围内造成杀虫剂的抵抗力促使灭绝这些努力。已经提出了在几代内部使用基因驱动器通过基因改造的蚊子通过对所需基因及其相关的表型性状,以解决可能无限期地维持疟疾传播的耐疟疾和其他问题。虽然这些方法的伦理和安全正在讨论,但数学模型提供了一种有效的方法,可以提高行为和估算这些干预措施的疗效,如果部署到面临挑战的特定区域,以达到消除的挑战。我们开发了一种载体遗传学的详细数学模型,其中特定基因组代码用于影响传输并受周围环境影响的物理属性。这是第一个将基于个体的多基因座遗传模型纳入一个详细的疟疾传输模型的模型。该模型开辟了门,以调查一些微妙但重要的问题,例如少数蚊子在低传输季节维持疟疾传播中的效果,以及基因驱动器在远端载体控制干预措施中的地区的成功在建立之前关闭基因驱动蚊子。在这里,我们研究了当前载体控制措施在存在杀虫剂抵抗的情况下降低的疗效,并评估使用基因驱动蚊子释放到其他载体控制措施的高传动设定中实现局部疟疾消除的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号