...
首页> 外文期刊>PLoS Computational Biology >Bistability, non-ergodicity, and inhibition in pairwise maximum-entropy models
【24h】

Bistability, non-ergodicity, and inhibition in pairwise maximum-entropy models

机译:双态性最大熵模型中的双稳态,非遍布性和抑制

获取原文

摘要

Pairwise maximum-entropy models have been used in neuroscience to predict the activity of neuronal populations, given only the time-averaged correlations of the neuron activities. This paper provides evidence that the pairwise model, applied to experimental recordings, would produce a bimodal distribution for the population-averaged activity, and for some population sizes the second mode would peak at high activities, that experimentally would be equivalent to 90% of the neuron population active within time-windows of few milliseconds. Several problems are connected with this bimodality: 1. The presence of the high-activity mode is unrealistic in view of observed neuronal activity and on neurobiological grounds. 2. Boltzmann learning becomes non-ergodic, hence the pairwise maximum-entropy distribution cannot be found: in fact, Boltzmann learning would produce an incorrect distribution; similarly, common variants of mean-field approximations also produce an incorrect distribution. 3. The Glauber dynamics associated with the model is unrealistically bistable and cannot be used to generate realistic surrogate data. This bimodality problem is first demonstrated for an experimental dataset from 159 neurons in the motor cortex of macaque monkey. Evidence is then provided that this problem affects typical neural recordings of population sizes of a couple of hundreds or more neurons. The cause of the bimodality problem is identified as the inability of standard maximum-entropy distributions with a uniform reference measure to model neuronal inhibition. To eliminate this problem a modified maximum-entropy model is presented, which reflects a basic effect of inhibition in the form of a simple but non-uniform reference measure. This model does not lead to unrealistic bimodalities, can be found with Boltzmann learning, and has an associated Glauber dynamics which incorporates a minimal asymmetric inhibition.
机译:对神经科学的成对最大熵模型已用于预测神经元群的活性,仅给予神经元活性的时间平均相关性。本文提供了应用于实验记录的成对模型,将为人口平均活动产生双峰分布,对于某些人口尺寸,第二种模式将在高活动中达到高度,实验将相当于90%的90%神经元种群在时间 - 窗口中有很少的千分之一。若干问题与这种双极性有关:1。对于观察到的神经元活动和神经生物学,高活度模式的存在是不现实的。 2. Boltzmann学习变得非ergodic,因此无法找到成对的最大熵分布:事实上,Boltzmann学习将产生不正确的分布;类似地,平均场近似的常见变体也产生了不正确的分布。 3.与模型相关联的Glauber动力学是不切实际的是保证性的,不能用于产生现实的代理数据。首先在猕猴的电机皮质中的159个神经元的实验数据集首次证明该双极性问题。然后,提供证据,这问题影响了几百或更多神经元的群体尺寸的典型神经记录。将双极性问题的原因被识别为具有均匀参考度量的标准最大熵分布不能模拟神经元抑制。为了消除该问题,提出了改进的最大熵模型,这反映了抑制的基本效果,以简单但不均匀的参考度量的形式。该模型不会导致不切实际的双峰,可以用Boltzmann学习找到,并且具有相关的Glauber动态,其包含最小的不对称抑制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号