首页> 外文期刊>Radiation oncology >Linac photon beam fine-tuning in PRIMO using the gamma-index analysis toolkit
【24h】

Linac photon beam fine-tuning in PRIMO using the gamma-index analysis toolkit

机译:LinaC光子束使用伽玛索引分析工具包微调在Primo中

获取原文
           

摘要

In Monte Carlo simulations, the fine-tuning of linac beam parameters to produce a good match between simulated and measured dose profiles is a lengthy, time-consuming and resource-intensive process. The objective of this study is to utilize the results of the gamma-index analysis toolkit embedded inside the windows-based PRIMO software package to yield a truncated linac photon beam fine-tuning process. Using PRIMO version 0.1.5.1307, a Varian Clinac 2100 is simulated at two nominal energy configurations of 6 MV and 10 MV for varying number of histories from 106 to more than 108. The dose is tallied on a homogeneous water phantom with dimensions 16.2?×?16.2?×?31.0?cm3 at a source-to-surface-distance of 100.0?cm. For each nominal energy setting, two initial electron beam energies are configured to reproduce the measured percent depth dose (PDD) distribution. Once the initial beam energy is fixed, several beam configurations are sequentially simulated to determine the parameters yielding good agreement with the measured lateral dose profiles. The simulated dose profiles are compared with the Varian Golden Beam Data Set (GBDS) using the gamma-index analysis method incorporating the dose-difference and distance-to-agreement criteria. The simulations are run on Pentium-type computers while the tuned 10 MV beam configuration is simulated at more than 108 histories using a virtual server in the Amazon.com Elastic Compute Cloud. The initial electron beam energy configuration that will likely reproduce the measured PDD is determined by comparing directly the gamma-index analysis results of two different beam configurations. The configuration is indicated to yield good agreement with data if the gamma-index passing rates using the 1%/1?mm criteria generally increase as the number of histories is increased. Additionally at the highest number of histories, the matching configuration gives a much higher passing rate at the 1%/1?mm acceptance criteria over the other competing configuration. With the matching initial electron beam energy known, this input to the subsequent simulations allows the fine-tuning of the lateral beam profiles to proceed at a fixed yet lower number of histories. In a three-stage serial optimization procedure, the first remaining beam parameter is varied and the highest passing rate at the 1%/1?mm criteria is determined. This optimum value is input to the second stage and the procedure is repeated until all the remaining beam parameters are optimized. The final tuned beam configuration is then simulated at much higher number of histories and the good agreement with the measured dose distributions is verified. As physical nature is not stingy, it reveals at low statistics what is hidden at high statistics. In the matter of fine-tuning a linac to conform with measurements, this characteristic is exploited directly by the PRIMO software package. PRIMO is an automated, self-contained and full Monte Carlo linac simulator and dose calculator. It embeds the gamma-index analysis toolkit which can be used to determine all the parameters of the initial electron beam configuration at relatively lower number of histories before the full simulation is run at very high statistics. In running the full simulation, the Amazon.com compute cloud proves to be a very cost-effective and reliable platform. These results are significant because of the time required to run full-blown simulations especially for resource-deficient communities where there could just be one computer as their sole workhorse.
机译:在Monte Carlo模拟中,LinaC光束参数的微调在模拟和测量剂量型材之间产生良好匹配的良好匹配是一种冗长,耗时和资源密集的过程。本研究的目的是利用嵌入基于Windows的Primo软件包内的Gamma-Index分析工具包的结果,以产生截短的LINAC光子束微调过程。使用PRIMO版本0.1.5.1307,varian Clarac 2100以6 mV和10 mV的两个标称能量配置模拟,以改变106至108以上的历史数量。在具有尺寸16.2的均匀水模型上占用的剂量。 ?16.2?×31.0?cm3在100.0Ω·厘米的源极距离。对于每个标称能量设定,两个初始电子束能量被配置为再现测量的百分比深度剂量(PDD)分布。一旦初始光束能量被固定,依次模拟了几个光束配置以确定与测量的横向剂量型材均匀的参数。使用包含剂量差异和距离 - 与距离标准的伽马指数分析方法将模拟剂量分布与Varian Golden Beam数据集(GBDs)进行比较。仿真在奔腾型计算机上运行,​​而使用Amazon.com Elastic Compute Cloud中的虚拟服务器在超过108个历史记录的情况下模拟调谐10 MV光束配置。通过直接比较两种不同光束配置的伽马指数分析结果,确定可能再现测量PDD的初始电子束能量配置。如果使用1%/ 1?mm标准的伽马索引通过速率通常增加,如果使用历史数量的伽马索引通过速率通常增加,则该配置将与数据产生良好的协议。另外,历史数量最多,匹配配置在其他竞争配置上给出了1%/ 1?MM接受标准的更高的通过率。利用已知的匹配初始电子束能量,该输入到随后的模拟允许横向光束轮廓的微调以固定的但较低的历史数。在三阶段串行优化过程中,第一剩余光束参数变化,并且确定了1%/ 1×mm标准的最高流速。将该最佳值输入到第二阶段,并重复该过程,直到所有剩余的光束参数都被优化。然后在更高数量的历史中模拟最终调谐光束配置,并且验证了与测量剂量分布的良好一致性。由于物理性质并不吝啬,它在低统计数据中揭示了在高统计数据中隐藏的内容。在微调符合测量的情况下,使用Primo软件包直接利用这种特性。 Primo是一种自动,独立和全蒙特卡罗LinaC模拟器和剂量计算器。它嵌入了伽玛索引分析工具包,该工具包可用于在完全仿真运行之前在非常高的统计中运行之前在相对较低的历史中确定初始电子束配置的所有参数。在运行完整的模拟时,Amazon.com计算云被证明是一个非常具有成本效益和可靠的平台。这些结果是显着的,因为运行全面模拟所需的时间,特别是对于资源缺陷的社区,可以只有一台计算机作为他们的唯一主管。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号