...
首页> 外文期刊>Light: Science & Applications >Common-path interferometric label-free protein sensing with resonant dielectric nanostructures
【24h】

Common-path interferometric label-free protein sensing with resonant dielectric nanostructures

机译:通过共振电介质纳米结构的公共途径干涉式无标记蛋白质感测

获取原文

摘要

Research toward photonic biosensors for point-of-care applications and personalized medicine is driven by the need for high-sensitivity, low-cost, and reliable technology. Among the most sensitive modalities, interferometry offers particularly high performance, but typically lacks the required operational simplicity and robustness. Here, we introduce a common-path interferometric sensor based on guided-mode resonances to combine high performance with inherent stability. The sensor exploits the simultaneous excitation of two orthogonally polarized modes, and detects the relative phase change caused by biomolecular binding on the sensor surface. The wide dynamic range of the sensor, which is essential for fabrication and angle tolerance, as well as versatility, is controlled by integrating multiple, tuned structures in the field of view. This approach circumvents the trade-off between sensitivity and dynamic range, typical of other phase-sensitive modalities, without increasing complexity. Our sensor enables the challenging label-free detection of procalcitonin, a small protein (13-kDa) and biomarker for infection, at the clinically relevant concentration of 1-pg-mL1, with a signal-to-noise ratio of 35. This result indicates the utility for an exemplary application in antibiotic guidance, and opens possibilities for detecting further clinically or environmentally relevant small molecules with an intrinsically simple and robust sensing modality. Portable devices that spot biomarkers in a patient"s bloodstream stand to benefit from a photonic microchip that can achieve ultra-low detection limits. Isabel Barth from the University of York in the United Kingdom and colleagues designed a biosensor based on guided-mode resonances, a phenomenon that uses laser light to switch on strong resonant signals inside nanoscale gratings. The researchers improved this technology by simultaneously exciting two resonant modes with a low-cost laser diode. This approach enables sensing of protein-antibody binding induced refractive index changes using relative phase differences between the two modes, minimizing the impact of noise due to outside sources including mechanical vibrations. The team demonstrated label-free detection of procalcitonin, a key biomarker for bacterial infections, at picogram/milliliter scales, which could, for example, be relevant in the context of bacterial co-infections of COVID-19 patients.
机译:对护理点应用和个性化药物的光子生物传感器的研究是通过对高灵敏度,低成本和可靠技术的需求驱动的。在最敏感的模式中,干涉测量提供特别高的性能,但通常缺乏所需的操作简单和鲁棒性。在这里,我们基于引导模式谐振引入公共路径干涉传感器,以将高性能与固有稳定性相结合。传感器利用两个正交偏振模式的同时激发,并检测由传感器表面上的生物分子结合引起的相对相变。通过在视野中积分多个调谐结构来控制对制造和角度公差至关重要的传感器的宽动态范围。这种方法避免了敏感性和动态范围之间的折衷,典型的其他相敏型模式,而不会增加复杂性。我们的传感器能​​够在临床相关浓度为1-pG-ML1的临床相关浓度下挑战ProCalcitonin,一种小蛋白质(13-KDA)和生物标志物的无标记检测,具有35的信噪比。这结果表示抗生素引导中示例性应用的实用性,并打开具有具有本质上简单且稳健的感测模态的进一步临床或环境相关的小分子的可能性。便携式设备在患者的血流站中汲取生物标志物,可以从光子微芯片中受益,这可以实现超低检测限。英国约克大学的Isabel Barth和同事设计了基于导频共振的生物传感器,一种使用激光在纳米级光栅内切换强谐振信号的现象。研究人员通过使用低成本激光二极管同时激发两个共振模式来改善这项技术。这种方法能够使用相对的蛋白质 - 抗体结合抗指数变化的感测两种模式之间的相位差,最小化由于机械振动等外部来源的噪声的影响。该团队在皮科/毫米尺度下表现出对细菌感染的关键生物标志物的无标记检测,这可能是在Covid-19患者的细菌共感染的背景下相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号