首页> 外文学位 >Nanostructured plasmonic interferometers for ultrasensitive label-free biosensing.
【24h】

Nanostructured plasmonic interferometers for ultrasensitive label-free biosensing.

机译:纳米结构的等离子干涉仪,用于超灵敏的无标记生物传感。

获取原文
获取原文并翻译 | 示例

摘要

Optical biosensors that utilize surface plasmon resonance (SPR) technique to analyze the biomolecular interactions have been extensively explored in the last two decades and have become the gold standard for label-free biosensing. These powerful sensing tools allow fast, highly-sensitive monitoring of the interaction between biomolecules in real time, without the need for laborious fluorescent labeling, and have found widely ranging applications from biomedical diagnostics and drug discovery, to environmental sensing and food safety monitoring. However, the prism-coupling SPR geometry is complex and bulky, and has severely limited the integration of this technique into low-cost portable biomedical devices for point-of-care diagnostics and personal healthcare applications. Also, the complex prism-coupling scheme prevents the use of high numerical aperture (NA) optics to increase the spatial resolution for multi-channel, high-throughput detection in SPR imaging mode. This dissertation is focused on the design and fabrication of a promising new class of nanopatterned interferometric SPR sensors that integrate the strengths of miniaturized nanoplasmonic architectures with sensitive optical interferometry techniques to achieve bold advances in SPR biosensing. The nanosensor chips developed provide superior sensing performance comparable to conventional SPR systems, but employing a far simpler collinear optical transmission geometry, which largely facilitates system integration, miniaturization, and low-cost production. Moreover, the fabricated nanostructure-based SPR sensors feature a very small sensor footprint, allowing massive multiplexing on a chip for high-throughput detection. The successful transformation of SPR technique from bulky prism-coupling setup into this low-cost compact plasmonic platform would have a far-reaching impact on point-of-care diagnostic tools and also lead to advances in high-throughput sensing applications in proteomics, immunology, drug discovery, and fundamental cell biology research.
机译:在过去的二十年中,利用表面等离子体激元共振(SPR)技术分析生物分子相互作用的光学生物传感器已得到广泛探索,并已成为无标记生物传感的金标准。这些功能强大的传感工具可快速,高度灵敏地实时监测生物分子之间的相互作用,而无需费力的荧光标记,并且已发现了从生物医学诊断和药物发现到环境传感和食品安全监测的广泛应用。但是,棱镜耦合SPR的几何形状既复杂又笨重,并严重限制了该技术在低成本便携式生物医学设备中的集成,以用于即时诊断和个人医疗保健应用。此外,复杂的棱镜耦合方案还阻止了使用高数值孔径(NA)光学器件来提高SPR成像模式下多通道,高通量检测的空间分辨率。本论文的重点是有前途的新型纳米图案干涉式SPR传感器的设计和制造,该传感器将小型化的纳米等离子体结构的强度与灵敏的光学干涉技术相结合,以实现SPR生物传感的大胆进步。所开发的纳米传感器芯片可提供与传统SPR系统相媲美的卓越感测性能,但采用了更为简单的共线光学传输几何结构,极大地促进了系统集成,小型化和低成本生产。此外,基于纳米结构的装配式SPR传感器具有非常小的传感器占用空间,可以在芯片上进行大规模多路复用以进行高通量检测。将SPR技术从笨重的棱镜耦合装置成功转换为这种低成本的紧凑型等离激元平台,将对即时诊断工具产生深远影响,并且还将导致蛋白质组学,免疫学领域的高通量传感应用取得进步,药物发现和基础细胞生物学研究。

著录项

  • 作者

    Gao, Yongkang.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Nanotechnology.;Engineering Biomedical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号