...
首页> 外文期刊>Light: Science & Applications >Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor
【24h】

Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor

机译:石墨烯场效应晶体管通道中的等离子体波的直接纳米镜观察

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Plasma waves play an important role in many solid-state phenomena and devices. They also become significant in electronic device structures as the operation frequencies of these devices increase. A prominent example is field-effect transistors (FETs), that witness increased attention for application as rectifying detectors and mixers of electromagnetic waves at gigahertz and terahertz frequencies, where they exhibit very good sensitivity even high above the cut-off frequency defined by the carrier transit time. Transport theory predicts that the coupling of radiation at THz frequencies into the channel of an antenna-coupled FET leads to the development of a gated plasma wave, collectively involving the charge carriers of both the two-dimensional electron gas and the gate electrode. In this paper, we present the first direct visualization of these waves. Employing graphene FETs containing a buried gate electrode, we utilize near-field THz nanoscopy at room temperature to directly probe the envelope function of the electric field amplitude on the exposed graphene sheet and the neighboring antenna regions. Mapping of the field distribution documents that wave injection is unidirectional from the source side since the oscillating electrical potentials on the gate and drain are equalized by capacitive shunting. The plasma waves, excited at 2-THz, are overdamped, and their decay time lies in the range of 25-70-fs. Despite this short decay time, the decay length is rather long, i.e., 0.3-0.5-m, because of the rather large propagation speed of the plasma waves, which is found to lie in the range of 3.5-7--106-m/s, in good agreement with theory. The propagation speed depends only weakly on the gate voltage swing and is consistent with the theoretically predicted $$rac{1}{4}$$ power law.
机译:等离子体波在许多固态现象和设备中起着重要作用。它们在电子设备结构中也变得显着,因为这些设备的操作频率增加。一个突出的例子是现场效应晶体管(FET),其证明在Gigahertz和太赫兹频率下的整流检测器和电磁波的混合器的应用程序增加,它们甚至高于由载体定义的截止频率高于高于截止频率的非常好的敏感性过境时间。运输理论预测,THz频率的辐射耦合到天线耦合FET的通道导致门控等离子体波的发展,统称为二维电子气体和栅电极的电荷载流子。在本文中,我们介绍了这些波的第一次直接可视化。采用含有掩埋栅电极的石墨烯FET,我们在室温下利用近场THZ纳米镜,直接探测暴露的石墨烯片和相邻天线区域上的电场幅度的包络函数。由于栅极和漏极上的振动电位,因此通过电容分流均衡,因此从源侧单向映射波喷射的场分布文档。在2-THz处激发的等离子体波是过度调整的,并且它们的衰减时间位于25-70-fs的范围内。尽管这短暂衰减时间,衰减长度相当长,即0.3-0.5-m,因为等离子体波的增长速度相当大,发现位于3.5-7--106-m的范围内/ s,与理论吻合良好。传播速度仅取决于栅极电压摆幅弱,并且与理论上预测的$$ FRAC {1} {4} $$权力法保持一致。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号