首页> 外文期刊>NPJ systems biology and applications. >An unconventional uptake rate objective function approach enhances applicability of genome-scale models for mammalian cells
【24h】

An unconventional uptake rate objective function approach enhances applicability of genome-scale models for mammalian cells

机译:非传统的摄取率客观函数方法提高了哺乳动物细胞基因组模型的适用性

获取原文
获取外文期刊封面目录资料

摘要

Constraint-based modeling has been applied to analyze metabolism of numerous organisms via flux balance analysis and genome-scale metabolic models, including mammalian cells such as the Chinese hamster ovary (CHO) cells-the principal cell factory platform for therapeutic protein production. Unfortunately, the application of genome-scale model methodologies using the conventional biomass objective function is challenged by the presence of overly-restrictive constraints, including essential amino acid exchange fluxes that can lead to improper predictions of growth rates and intracellular flux distributions. In this study, these constraints are found to be reliably predicted by an "essential nutrient minimization" approach. After modifying these constraints with the predicted minimal uptake values, a series of unconventional objective functions are applied to minimize each individual non-essential nutrient uptake rate, revealing useful insights about metabolic exchange rates and flows across different cell lines and culture conditions. This unconventional uptake-rate objective functions (UOFs) approach is able to distinguish metabolic differences between three distinct CHO cell lines (CHO-K1, -DG44, and -S) not directly observed using the conventional biomass growth maximization solutions. Further, a comparison of model predictions with experimental data from literature correctly correlates with the specific CHO-DG44-derived cell line used experimentally, and the corresponding dual prices provide fruitful information concerning coupling relationships between nutrients. The UOFs approach is likely to be particularly suited for mammalian cells and other complex organisms which contain multiple distinct essential nutrient inputs, and may offer enhanced applicability for characterizing cell metabolism and physiology as well as media optimization and biomanufacturing control.
机译:基于约束的建模已经应用于通过助焊剂平衡分析和基因组级代谢模型分析许多生物体的代谢,包括哺乳动物细胞,如中国仓鼠卵巢(CHO)细胞 - 治疗蛋白质生产的主要细胞工厂平台。遗憾的是,通过存在过度限制的限制的存在,包括过度限制性约束的基因组 - 级模型方法的应用,包括可能导致生长速率和细胞内通量分布的必需氨基酸交换助熔剂。在该研究中,发现这些约束通过“基本营养最小化”方法可靠地预测。在通过预测的最小摄取值修改这些约束之后,应用了一系列非常规的客观功能,以最大限度地减少每种非必要的营养吸收率,揭示了对不同细胞系和培养条件的代谢汇率和流动的有用见解。这种非传统的摄取率客观功能(UOF)方法能够利用常规生物质生长最大化溶液直接观察到三种不同的CHO细胞系(CHO-K1,-DG44和-S)之间的代谢差异。此外,与文献的实验数据的模型预测的比较与实验使用的特定CHO-DG44衍生的细胞系相对相关,并且相应的双重价格提供了有关营养成分之间的耦合关系的富有成果的信息。 UOF的方法可能特别适用于哺乳动物细胞和含有多种不同的必需营养输入的其他复杂生物,并且可以提供增强的适用性,用于表征细胞代谢和生理学以及培养基优化和生物制造对照。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号