首页> 外文期刊>Nanomaterials >Study of the Photothermal Catalytic Mechanism of CO 2 Reduction to CH 4 by Ruthenium Nanoparticles Supported on Titanate Nanotubes
【24h】

Study of the Photothermal Catalytic Mechanism of CO 2 Reduction to CH 4 by Ruthenium Nanoparticles Supported on Titanate Nanotubes

机译:钛纳米甲烯烃纳米粒子CO 2纳米粒子CO 2降低至CH 4的光热催化机理研究

获取原文
       

摘要

The Sabatier reaction could be a key tool for the future of the renewable energy field due to the potential of this reaction to produce either fuels or to stabilize H 2 in the form of stable chemicals. For this purpose, a new composite made of ruthenium oxide nanoparticles (NPs) deposited on titanate nanotubes (TiNTs) was tested. Titanate nanotubes are a robust semiconductor with a one-dimensional (1D) morphology that results in a high contact area making this material suitable for photocatalysis. Small ruthenium nanoparticles (1.5 nm) were deposited on TiNTs at different ratios by Na + -to-Ru 3+ ion exchanges followed by calcination. These samples were tested varying light power and temperature conditions to study the reaction mechanism during catalysis. Methanation of CO 2 catalyzed by Ru/TiNT composite exhibit photonic and thermic contributions, and their ratios vary with temperature and light intensity. The synthesized composite achieved a production rate of 12.4 mmol CH 4 ·g cat ?1 ·h ?1 equivalent to 110.7 mmol of CH 4 ·g Ru ?1 ·h ?1 under 150 mW/cm 2 simulated sunlight irradiation at 210 °C. It was found that photo-response derives either from Ru nanoparticle excitation in the visible (VIS) and near-infrared (NIR) region (photothermal and plasmon excitation mechanism) or from TiNT excitation in the ultraviolet (UV) region leading to electron–hole separation and photoinduced electron transfer.
机译:由于该反应的潜力,使得可再生能源领域的可再生能源导场的关键工具可以是产生燃料或以稳定化学品的形式稳定H 2,因此是可再生能源场的关键工具。为此目的,测试由沉积在钛酸盐纳米管(色调)上的氧化钌纳米颗粒(NPS)制成的新复合物。钛酸纳米管是具有一维(1D)形态的鲁棒半导体,其导致高接触区域,使得该材料适合于光催化。通过Na + -TO-Ru 3+离子交换,沉积小钌纳米颗粒(1.5nm)以不同比例的不同比例沉积。测试这些样品的变化的光功率和温度条件,以在催化期间研究反应机制。 Ru / Tint复合材料催化的CO 2的甲烷化表现出光子和热贡献,其比率随温度和光强度而变化。合成的复合材料达到12.4mmol Ch 4·G猫的生产率为110.7mmol CH 4·G ruα1·H 2在150 mW / cm 2下的210°C下模拟阳光照射下的110.7mmolα1·1 。发现光响应来自可见(VI)和近红外(NIR)区域(光热和等离子体激发机制)中的Ru纳米粒子激发或从导致电子孔的紫外(UV)区域中的色调激发分离和光致电子转移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号