首页> 外文期刊>Frontiers in Neuroinformatics >Diffantom: Whole-Brain Diffusion MRI Phantoms Derived from Real Datasets of the Human Connectome Project
【24h】

Diffantom: Whole-Brain Diffusion MRI Phantoms Derived from Real Datasets of the Human Connectome Project

机译:Diffantom:来自人类连接项目的真实数据集的全脑扩散MRI幻影

获取原文
       

摘要

Diffantom in brief Diffantom is a whole-brain diffusion MRI (dMRI) phantom publicly available through the Dryad Digital Repository (doi: 10.5061/dryad.4p080 ). The dataset contains two single-shell dMRI images, along with the corresponding gradient information, packed following the BIDS standard (Brain Imaging Data Structure, Gorgolewski et al., 2015 ). The released dataset is designed for the evaluation of the impact of susceptibility distortions and benchmarking existing correction methods. In this Data Report we also release the software instruments involved in generating diffantoms , so that researchers are able to generate new phantoms derived from different subjects, and apply these data in other applications like investigating diffusion sampling schemes, the assessment of dMRI processing methods, the simulation of pathologies and imaging artifacts, etc. In summary, Diffantom is intended for unit testing of novel methods, cross-comparison of established methods, and integration testing of partial or complete processing flows to extract connectivity networks from dMRI. Introduction Fiber tracking on dMRI data has become an important tool for the in vivo investigation of the structural configuration of fiber bundles at the macroscale. Tractography is fundamental to gain information about white matter (WM) morphology in many clinical applications like neurosurgical planning (Golby et al., 2011 ), post-surgery evaluations (Toda et al., 2014 ), and the study of neurological diseases as in Chua et al. ( 2008 ) addressing multiple sclerosis and Alzheimer's disease. The analysis of structural brain networks using graph theory is also applied on tractography, for instance in the definition of the unique subject-wise patterns of connectivity (Sporns et al., 2005 ), in the assessment of neurological diseases (Griffa et al., 2013 ), and in the study of the link between structural and functional connectivity (Messé et al., 2015 ). However, the development of the field is limited by the lack of a gold standard to test and compare the wide range of methodologies available for processing and analyzing dMRI. Large efforts have been devoted to the development of physical phantoms (Lin et al., 2001 ; Campbell et al., 2005 ; Perrin et al., 2005 ; Fieremans et al., 2008 ; Tournier et al., 2008 ). C?té et al. ( 2013 ) conducted a thorough review of tractography methodologies using the so-called FiberCup phantom (Poupon et al., 2008 ; Fillard et al., 2011 ). These phantoms are appropriate to evaluate the angular resolution in fiber crossings and accuracy of direction-independent scalar parameters in very simplistic geometries. Digital simulations are increasingly popular because the complexity of whole-brain tractography can not be accounted for with current materials and proposed methodologies to build physical phantoms. Early digital phantoms started with simulation of simple geometries (Basser et al., 2000 ; G?ssl et al., 2002 ; Tournier et al., 2002 ; Leemans et al., 2005 ) to evaluate the angular resolution as well. These tools generally implemented the multi-tensor model (Alexander et al., 2001 ; Tuch et al., 2002 ) to simulate fiber crossing, fanning, kissing, etc. Close et al. ( 2009 ) presented the Numerical Fiber Generator , a software to simulate spherical shapes filled with digital fiber tracts. Caruyer et al. ( 2014 ) proposed Phantomas to simulate any kind of analytic geometry inside a sphere. Phantomas models diffusion by a restricted and a hindered compartment, similar to Assaf and Basser ( 2005 ). Wilkins et al. ( 2015 ) proposed a whole-brain simulated phantom derived from voxel-wise orientation of fibers averaged from real dMRI scans and the multi-tensor model with a compartment of isotropic diffusion. Neher et al. ( 2014 ) proposed FiberFox , a visualization software to develop complex geometries and their analytical description. Once the geometries are obtained, the software generates the corresponding dMRI signal with a methodology very close to that implemented in Phantomas . An interesting outcome of FiberFox is the phantom dataset ~(1) created for the Tractography Challenge held in ISMRM 2015. This dataset was derived from the tractography extracted in one Human Connectome Project (HCP, Van Essen et al., 2012 ) dataset. In the tractogram, 25 fiber bundles of interest were manually segmented by experts. Using FiberFox , the segmentation of each bundle was mapped to an analytical description, and finally simulated the signal. In this data report we present Diffantom , an in silico dataset to assess tractography and connectivity pipelines using dMRI real data as source microstructural information. Diffantom is inspired by the work of Wilkins et al. ( 2015 ), with two principal novelties. First, since we use a dataset from the HCP as input, data are already corrected for the most relevant distortions. The second improvement is a more advanced signal model to generate the phantom using the hindered and
机译:Summantom在简单的族族是通过Datead Digital Repository公开可用的全脑扩散MRI(DMRI)幻象(DOI:10.5061 / DRYAD.4P080)。数据集包含两个单壳DMRI图像,以及相应的梯度信息,按照BIDS标准(脑成像数据结构,GorgoleWski等,2015)。发布的数据集专为评估易感性扭曲和基准测试现有校正方法的影响而评估。在此数据报告中,我们还释放了生成不同组织所涉及的软件仪器,以便研究人员能够生成从不同对象的新的幻影,并在其他应用中应用这些数据,如研究扩散采样方案,DMRI处理方法的评估,即DMRI处理方法的评估,摘要仿真在概述中,Simantom用于单元测试新的方法,建立方法的交叉比较,以及部分或完整处理流的集成测试,以从DMRI提取连接网络。简介DMRI数据的纤维跟踪已成为体内调查Macroscale纤维束结构配置的重要工具。牵引术是在许多临床应用中获取有关白质(WM)形态的信息,如神经外科规划(GOLBY等,2011),手术后评估(TODA等,2014),以及神经疾病的研究Chua等人。 (2008)解决多发性硬化和阿尔茨海默病。使用图形理论的结构脑网络分析也应用于牵引图,例如在评估神经疾病评估时(GRIFFA等,)的定义(Sporns等,2005)的定义(Sporns等,2005)中的定义(Griffa等, 2013年),在结构与功能连接之间的联系(Messé等,2015)。然而,该领域的开发受到缺乏金标准测试的限制,并比较可用于处理和分析DMRI的各种方法。物理幻影的发展(Lin等人,2001年; Campbell等,2005; Perrin等,2005; Fieremans等,2008; Tournier等,2008)的大规模努力。 C?Té等人。 (2013)使用所谓的FIBERCUP PHANTOM对牵引方法进行彻底审查(Poupon等,2008; illard等,2011)。这些幻像适合于评估光纤交叉角度的角度分辨率以及在非常简单的几何形状中的方向独立的标量参数的精度。数字模拟越来越受欢迎,因为整个脑牵引的复杂性无法用当前材料和建议的方法构建物理幻影的方法。早期的数码幻像开始模拟简单几何形状(Basser等,2000; G?SL等,2002; Tournier等,2005),也是评估角度分辨率。这些工具通常实施了多张量模型(Alexander等,2001; Tuch等,2002)来模拟光纤交叉,扇动,接吻等。靠近等人。 (2009)介绍了数字光纤发生器,一种模拟充满数字纤维束的球形的软件。 Caruyer等。 (2014)提出的幽灵族模拟球体内的任何类型的分析几何形状。幽灵模型由受限制和阻碍隔间扩散,类似于Assaf和Basser(2005)。 Wilkins等人。 (2015)提出了一种全脑模拟幻影,其衍生自Real DMRI扫描的纤维的纤维的Voxel-Wise取向,并且具有各向同性扩散的隔室的多张量模型。奈瑟等。 (2014)建议的FiberFox,一种可视化软件,用于开发复杂的几何形状及其分析描述。一旦获得了几何形状,软件就会产生相应的DMRI信号,其方法非常接近于在幽灵中实现的方法。 Fiberfox的一个有趣结果是为ISMRM 2015中举行的牵引挑战创建的幻影数据集〜(1)。该数据集源自一个人类连接项目中提取的牵引(HCP,Van Essen等,2012)数据集。在牵引图中,专家手动分割了25个兴趣束。使用Firectfox,将每个束的分割映射到分析描述,最后模拟信号。在此数据报告中,我们在Silico DataSet中显示来自SilicoDoM,以评估使用DMRI实数据作为源微结构信息的牵引和连接管道。遍布威尔金斯等人的工作受到启发。 (2015),有两个主要的新科。首先,由于我们将数据集从HCP用作输入,因此已经纠正了最相关的扭曲。第二种改进是一种更先进的信号模型,可以使用受阻和脉冲生成幻像

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号