首页> 外文期刊>Frontiers in Plant Science >Spatial Self-Organization of Vegetation Subject to Climatic Stress—Insights from a System Dynamics—Individual-Based Hybrid Model
【24h】

Spatial Self-Organization of Vegetation Subject to Climatic Stress—Insights from a System Dynamics—Individual-Based Hybrid Model

机译:植被的空间自组织受系统动态 - 基于个体的混合模型的气候压力见解

获取原文
           

摘要

In simulation models of populations or communities, individual plants have often been obfuscated in favor of aggregated vegetation. This simplification comes with a loss of biological detail and a smoothing out of the demographic noise engendered by stochastic individual-scale processes and heterogeneities, which is significant among others when studying the viability of small populations facing challenging fluctuating environmental conditions. This consideration has motivated the development of precise plant-centered models. The accuracy gained in the representation of plant biology has then, however, often been balanced by the disappearance in models of important plant-soil interactions (esp. water dynamics) due to the inability of most individual-based frameworks to simulate complex continuous processes. In this study, we used a hybrid modeling approach, namely integrated System Dynamics (SD)—Individual-based (IB), to illustrate the importance of individual plant dynamics to explain spatial self-organization of vegetation in arid environments. We analyzed the behavior of this model under different parameter sets either related to individual plant properties (such as seed dispersal distance and reproductive age) or the environment (such as intensity and yearly distribution of precipitation events). While the results of this work confirmed the prevailing theory on vegetation patterning, they also revealed the importance therein of plant-level processes that cannot be rendered by reaction-diffusion models. Initial spatial distribution of plants, reproductive age, and average seed dispersal distance, by impacting patch size and vegetation aggregation, affected pattern formation and population survival under climatic variations. Besides, changes in precipitation regime altered the demographic structure and spatial organization of vegetation patches by affecting plants differentially depending on their age and biomass. Water availability influenced non-linearly total biomass density. Remarkably, lower precipitation resulted in lower mean plant age yet higher mean individual biomass. Moreover, seasonal variations in rainfall greater than a threshold (here, ±0.45 mm from the 1.3 mm baseline) decreased mean total biomass and generated limit cycles, which, in the case of large variations, were preceded by chaotic demographic and spatial behavior. In some cases, peculiar spatial patterns (e.g., rings) were also engendered. On a technical note, the shortcomings of the present model and the benefit of hybrid modeling for virtual investigations in plant science are discussed.
机译:在人口或社区的仿真模型中,个体植物经常被滥用,有利于聚集植被。这种简化具有消失的生物细节,并且通过随机单个方法和异质性发出的人口噪声,在研究面临挑战的波动环境条件的小群体的生存能力时,这是显着的。这一考虑因素促使开发精确的植物中心模型。然而,植物生物学的代表中获得的准确性经常通过重要植物 - 土壤相互作用(ESP。水动态)的模型消失而平衡。由于大多数基于个体的框架,以模拟复杂的连续过程,因此是由于大多数个体的框架。在这项研究中,我们使用了混合模拟方法,即集成系统动态(SD) - 基于SDIVISIDULID(IB),以说明个体植物动态的重要性,以解释干旱环境中植被的空间自组织。我们在不同的参数集中分析了该模型的行为与单个植物属性(例如种子分散距离和生殖年龄)或环境(例如降水事件的强度和年分布)相关。虽然这项工作的结果证实了对植被图案的普遍理论,但它们还揭示了在其中不能通过反应扩散模型呈现的植物级过程的重要性。植物,生殖年龄和平均种子分散距离的初始空间分布,通过影响斑块尺寸和植被聚集,影响气候变化下的植被形成和种群存活。此外,降水制度的变化通过影响其年龄和生物质的差异而改变了人口结构和植被补片的空间组织。水可用性影响了非线性总体生物质密度。值得注意的是,较低的沉淀导致较低的平均植物年龄较高,但平均个体生物质。此外,降雨量大于阈值的季节变化(这里,来自1.3mm基线的±0.45mm)降低了平均生物量和产生的极限循环,其在大变化的情况下,前面是混乱的人口统计学和空间行为。在某些情况下,特殊的空间模式(例如,环)也被提取。在技​​术说明中,讨论了本模型的缺点以及植物科学中虚拟调查的混合建模的益处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号