首页> 美国卫生研究院文献>other >Spatial Self-Organization of Vegetation Subject to Climatic Stress—Insights from a System Dynamics—Individual-Based Hybrid Model
【2h】

Spatial Self-Organization of Vegetation Subject to Climatic Stress—Insights from a System Dynamics—Individual-Based Hybrid Model

机译:气候压力作用下植被的空间自组织-来自系统动力学的观点-基于个体的混合模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In simulation models of populations or communities, individual plants have often been obfuscated in favor of aggregated vegetation. This simplification comes with a loss of biological detail and a smoothing out of the demographic noise engendered by stochastic individual-scale processes and heterogeneities, which is significant among others when studying the viability of small populations facing challenging fluctuating environmental conditions. This consideration has motivated the development of precise plant-centered models. The accuracy gained in the representation of plant biology has then, however, often been balanced by the disappearance in models of important plant-soil interactions (esp. water dynamics) due to the inability of most individual-based frameworks to simulate complex continuous processes. In this study, we used a hybrid modeling approach, namely integrated System Dynamics (SD)—Individual-based (IB), to illustrate the importance of individual plant dynamics to explain spatial self-organization of vegetation in arid environments. We analyzed the behavior of this model under different parameter sets either related to individual plant properties (such as seed dispersal distance and reproductive age) or the environment (such as intensity and yearly distribution of precipitation events). While the results of this work confirmed the prevailing theory on vegetation patterning, they also revealed the importance therein of plant-level processes that cannot be rendered by reaction-diffusion models. Initial spatial distribution of plants, reproductive age, and average seed dispersal distance, by impacting patch size and vegetation aggregation, affected pattern formation and population survival under climatic variations. Besides, changes in precipitation regime altered the demographic structure and spatial organization of vegetation patches by affecting plants differentially depending on their age and biomass. Water availability influenced non-linearly total biomass density. Remarkably, lower precipitation resulted in lower mean plant age yet higher mean individual biomass. Moreover, seasonal variations in rainfall greater than a threshold (here, ±0.45 mm from the 1.3 mm baseline) decreased mean total biomass and generated limit cycles, which, in the case of large variations, were preceded by chaotic demographic and spatial behavior. In some cases, peculiar spatial patterns (e.g., rings) were also engendered. On a technical note, the shortcomings of the present model and the benefit of hybrid modeling for virtual investigations in plant science are discussed.
机译:在种群或社区的模拟模型中,通常会混淆单个植物,以利于聚集的植被。这种简化带来了生物学细节的损失,并消除了随机个体规模过程和异质性所带来的人口统计学噪声,这在研究面临挑战性的动荡环境的小种群的生存能力时尤其重要。这种考虑激发了精确的以植物为中心的模型的开发。然而,由于大多数基于个体的框架无法模拟复杂的连续过程,因此重要的植物-土壤相互作用模型(尤其是水动力学)的消失常常平衡了植物生物学表示方法的准确性。在这项研究中,我们使用了一种混合建模方法,即集成的系统动力学(SD)-基于个人的(IB),以说明单个植物动力学对于解释干旱环境中植被的空间自组织的重要性。我们分析了该模型在不同参数集下的行为,这些参数集与个体植物特性(例如种子传播距离和繁殖年龄)或环境(例如降水事件的强度和年度分布)有关。尽管这项工作的结果证实了关于植被格局的流行理论,但他们也揭示了其中反应扩散模型无法体现的植物水平过程的重要性。通过影响斑块大小和植被聚集,影响模式形成和气候变化下的种群存活,植物的初始空间分布,生殖年龄和平均种子传播距离。此外,降水状况的变化通过影响植物的年龄和生物量而对其产生不同的影响,从而改变了植被斑块的人口结构和空间组织。可用水量影响非线性总生物量密度。值得注意的是,较低的降水量导致较低的平均植物年龄,但较高的平均个体生物量。此外,降雨的季节变化大于阈值(此处为距1.3 mm基准的±0.45 mm)会降低平均总生物量并产生极限循环,在变化较大的情况下,这是人口统计和空间行为混乱的原因。在某些情况下,还会产生特殊的空间模式(例如,环)。在技​​术说明上,讨论了当前模型的缺点以及混合建模在植物科学虚拟研究中的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号