...
首页> 外文期刊>Frontiers in Immunology >Tryptophan Co-Metabolism at the Host-Pathogen Interface
【24h】

Tryptophan Co-Metabolism at the Host-Pathogen Interface

机译:Host-Pathogen接口的色氨酸共代谢

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Microbes have evolved to exploit humans as a rich source of nutrients to support survival andreplication. Although mammals and microbes may differ in their requirement for tryptophan(Trp), being an essential amino acid in the former and produced, with some exceptions, bybacteriaandfungi,commoncatabolicenzymesaresharedbybothhostandpathogens.Indoleamine2,3-dioxygenases (IDOs) catabolize Trp to kynurenines and are widely distributed from bacteriato metazoans. The evolutionary conservation of the kynurenine pathway may be linked tothe importance of the de novo synthesis of nicotinamide adenine dinucleotide (NAD+), towhich it ultimately leads, although additional functions of kynurenines are increasingly beingrecognized. Indeed, it is now clearly established that mammalian IDOs regulate infection anddrive immune tolerance by means of Trp deprivation and the generation of active metabolites,including kynurenines. An additional level of complexity can be envisaged when microbes utilizeTrp via alternative pathways upon colonization of the host in a relationship that can be eithercommensalism or pathogenic. In these situations, the host and microbes are found to sharecommon substrates but the presence of dissimilar metabolic pathways may result in the generationof metabolites, such as indoles or tryptamine that can cross-regulate each others metabolism. Here,we discuss the potential relevance of Co-Trp metabolism or alternative secondary pathways of Trpdegradation in modulating host immune response and eventually the xenobiotic receptors (XRs),while regulating microbe fitness. These concepts are expected to open a novel scenario in whicha comprehensive assessment of the metabolic status is crucial to correctly evaluate pathologicalcolonization and drive the most appropriate therapeutic strategy.
机译:微生物已经进化为利用人类作为一种丰富的营养来源,以支持生存和加权塑造。虽然哺乳动物和微生物可能在对色氨酸(TRP)的要求中不同,但前者是一种必不可少的氨基酸并产生一些例外,有一些例外,有一些例外,白细胞癌,CancaInolicensareSharedBybothosandpathogens.indoleamine2,3-二氧基酶(IDOS)将TRP分解给犬育植物并广泛分布来自细菌的美唑诺亚。犬留蛋白途径的进化守恒可以联系到烟酰胺腺嘌呤二核苷酸(NAD +)的DE Novo合成的重要性,但它最终导致的梭氏蛋白,尽管寿命菇的额外功能越来越呈现。实际上,现在已经明确确定,哺乳动物IDO通过TRP剥夺和产生局部代谢物的产生,包括蛋白质蛋白酶的产生。当通过替代途径在宿主在可以是可归因的关系或致病性的关系中通过替代途径进行微生物使用途径时,可以设想额外的复杂程度。在这些情况下,宿主和微生物被发现对ShareCommon底物,但存在异种代谢途径可能导致代谢物的代谢物,例如可以交换彼此代谢的吲哚或色氨酸。在此,我们讨论Co-TRP代谢或替代次级途径在调节宿主免疫应答中的替代二级途径,并且最终是调节微生物的致疱疹受体(XRS)。这些概念预计将开展新颖的情景,其中对代谢状况的全面评估至关重要,可以正确评估病理批判并驱动最适当的治疗策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号