...
首页> 外文期刊>Frontiers in Computational Neuroscience >The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study
【24h】

The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study

机译:细胞内钠浓度的缓慢动态增加神经元集成的时间窗:模拟研究

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Changes in intracellular Na~(+)concentration ([Na~(+)]_(i)) are rarely taken into account when neuronal activity is examined. As opposed to Ca~(2+), [Na~(+)]_(i)dynamics are strongly affected by longitudinal diffusion, and therefore they are governed by the morphological structure of the neurons, in addition to the localization of influx and efflux mechanisms. Here, we examined [Na~(+)]_(i)dynamics and their effects on neuronal computation in three multi-compartmental neuronal models, representing three distinct cell types: accessory olfactory bulb (AOB) mitral cells, cortical layer V pyramidal cells, and cerebellar Purkinje cells. We added [Na~(+)]_(i)as a state variable to these models, and allowed it to modulate the Na~(+)Nernst potential, the Na~(+)-K~(+)pump current, and the Na~(+)-Ca~(2+)exchanger rate. Our results indicate that in most cases [Na~(+)]_(i)dynamics are significantly slower than [Ca~(2+)]_(i)dynamics, and thus may exert a prolonged influence on neuronal computation in a neuronal type specific manner. We show that [Na~(+)]_(i)dynamics affect neuronal activity via three main processes: reduction of EPSP amplitude in repeatedly active synapses due to reduction of the Na~(+)Nernst potential; activity-dependent hyperpolarization due to increased activity of the Na~(+)-K~(+)pump; specific tagging of active synapses by extended Ca~(2+)elevation, intensified by concurrent back-propagating action potentials or complex spikes. Thus, we conclude that [Na~(+)]_(i)dynamics should be considered whenever synaptic plasticity, extensive synaptic input, or bursting activity are examined.
机译:当检查神经元活性时,很少考虑细胞内Na〜(+)浓度的变化([Na〜(+)] _(i))。与Ca〜(2+)相反,[Na〜(+)] _(i)动态受纵向扩散的强烈影响,因此它们是由神经元的形态结构的管辖,除了涌入的本地化和efflux机制。在这里,我们检查了[Na〜(+)] _(i)动力学及其对三种多隔室神经元模型中神经元计算的影响,代表了三种不同的细胞类型:辅助嗅灯泡(Aob)二尖瓣细胞,皮质层v金字塔细胞,和小脑purkinje细胞。我们将[na〜(+)] _(i)添加为这些模型的状态变量,并允许它调制NA〜(+)nernst电位,NA〜(+) - k〜(+)泵电流,和NA〜(+) - CA〜(2+)交换机率。我们的结果表明,在大多数情况下,[Na〜(+)] _(i)动态比[Ca〜(2 +)] _(i)动态显着慢,因此可能对神经元中的神经元计算产生长时间的影响类型特定方式。我们表明[Na〜(+)] _(i)动态通过三个主要过程影响神经元活动:由于NA〜(+)NERNST潜力的降低,在反复有源突触中减少了EPSP幅度;活性依赖性超极化因Na〜(+) - k〜(+)泵的活性增加;通过扩展CA〜(2+)高程的特定标记有源突触,通过并发的回波传播动作电位或复杂尖峰加强。因此,我们得出结论,每当突触可塑性,广泛的突触输入或突破活动都会考虑[NA〜(+)] _(i)动态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号