首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study
【2h】

The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study

机译:细胞内钠浓度的慢动力学增加了神经元整合的时间窗:模拟研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Changes in intracellular Na+ concentration ([Na+]i) are rarely taken into account when neuronal activity is examined. As opposed to Ca2+, [Na+]i dynamics are strongly affected by longitudinal diffusion, and therefore they are governed by the morphological structure of the neurons, in addition to the localization of influx and efflux mechanisms. Here, we examined [Na+]i dynamics and their effects on neuronal computation in three multi-compartmental neuronal models, representing three distinct cell types: accessory olfactory bulb (AOB) mitral cells, cortical layer V pyramidal cells, and cerebellar Purkinje cells. We added [Na+]i as a state variable to these models, and allowed it to modulate the Na+ Nernst potential, the Na+-K+ pump current, and the Na+-Ca2+ exchanger rate. Our results indicate that in most cases [Na+]i dynamics are significantly slower than [Ca2+]i dynamics, and thus may exert a prolonged influence on neuronal computation in a neuronal type specific manner. We show that [Na+]i dynamics affect neuronal activity via three main processes: reduction of EPSP amplitude in repeatedly active synapses due to reduction of the Na+ Nernst potential; activity-dependent hyperpolarization due to increased activity of the Na+-K+ pump; specific tagging of active synapses by extended Ca2+ elevation, intensified by concurrent back-propagating action potentials or complex spikes. Thus, we conclude that [Na+]i dynamics should be considered whenever synaptic plasticity, extensive synaptic input, or bursting activity are examined.
机译:检查神经元活性时,很少考虑细胞内Na + 浓度([Na + ] i)的变化。与Ca 2 + 相反,[Na + ] i动力学受到纵向扩散的强烈影响,因此,除了神经元的形态结构外,它们还受神经元形态结构的控制。流入和流出机制的本地化。在这里,我们研究了[Na + ] i动力学及其对三种多隔室神经元模型的影响,这些模型代表了三种不同的细胞类型:嗅球(AOB)二尖瓣细胞,皮质V层锥体细胞细胞和小脑浦肯野细胞。我们在这些模型中添加了[Na + ] i作为状态变量,并允许其调制Na + 能斯特势能,Na + -K + 泵电流,以及Na + -Ca 2 + 交换器速率。我们的结果表明,在大多数情况下,[Na + ] i动力学要比[Ca 2 + ] i动力学慢得多,因此可能会对神经元计算产生长期影响。神经元类型的特定方式。我们显示[Na + ] i动力学通过三个主要过程影响神经元活动:由于Na + Nernst电位的降低,反复活动的突触中EPSP振幅的降低; Na + -K + 泵的活动增加导致活动依赖性超极化; Ca 2 + 升高引起活性突触的特异性标记,并发的反向传播动作电位或复杂的尖峰增强。因此,我们得出结论,每当检查突触可塑性,广泛的突触输入或爆发活动时,都应考虑[Na + ] i动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号