首页> 外文期刊>Forests >Estimation of the Restored Forest Spatial Structure in Semi-Arid Mine Dumps Using Worldview-2 Imagery
【24h】

Estimation of the Restored Forest Spatial Structure in Semi-Arid Mine Dumps Using Worldview-2 Imagery

机译:使用WorldView-2图像估算半干旱矿垃圾划分的恢复森林空间结构

获取原文

摘要

Forest monitoring is critical to the management and successful evaluation of ecological restoration in mined areas. However, in the past, available monitoring has mainly focused on traditional parameters and lacked estimation of the spatial structural parameters (SSPs) of forests. The SSPs are important indicators of forest health and resilience. The purpose of this study was to assess the feasibility of estimating the SSPs of restored forest in semi-arid mine dumps using Worldview-2 imagery. We used the random forest to extract the dominant feature factor subset; then, a regression model and mind evolutionary algorithm-back propagation (MEA-BP) neural network model were established to estimate the forest SSP. The results show that the textural features found using 3 × 3 window have a relatively high importance score in the random forest model. This indicates that the 3 × 3 texture factors have a relatively strong ability to explain the restored forest SSPs when compared with spectral factors. The optimal regression model has an R 2 of 0.6174 and an MSRE of 0.1001. The optimal MEA-BP neural network model has an R 2 of 0.6975 and an MSRE of 0.0906, which shows that the MEA-BP neural network has greater accuracy than the regression model. The estimation shows that the tree–shrub–grass mode with an average of 0.7351 has the highest SSP, irrespective of the restoration age. In addition, the SSP of each forest configuration type increases with the increase in restoration age except for the single grass configuration. The increase range of SSP across all modes was 0.0047–0.1471 after more than ten years of restoration. In conclusion, the spatial structure of a mixed forest mode is relatively complex. Application cases show that Worldview-2 imagery and the MEA-BP neural network method can support the effective evaluation of the spatial structure of restored forest in semi-arid mine dumps.
机译:森林监测对矿区生态恢复的管理和成功评估至关重要。然而,在过去,可用监测主要集中在传统参数上,缺乏森林空间结构参数(SSP)的估计。 SSP是森林健康和弹性的重要指标。本研究的目的是利用WorldView-2图像评估估算半干旱矿山倾倒的恢复森林SSP的可行性。我们使用随机森林来提取主导特征因子子集;然后,建立了回归模型和介意进化算法 - 后传播(MEA-BP)神经网络模型以估计森林SSP。结果表明,使用3×3窗口的纹理特征在随机林模型中具有相对高的重要评分。这表明3×3纹理因子与光谱因子相比,在与光谱因子相比时具有相对强烈的解释恢复的森林SSP的能力。最佳回归模型的R 2为0.6174和0.1001的MSRE。最佳MEA-BP神经网络模型的R 2为0.6975,而0.0906的MSRE,结果表明,MEA-BP神经网络具有比回归模型更高的精度。估计表明,平均0.7351的树灌木草型具有最高的SSP,无论恢复时期如何。此外,除了单草配置外,每个森林配置类型的SSP都随着恢复时代的增加而增加。在恢复十多年后,所有模式的SSP的增加范围为0.0047-0.1471。总之,混合森林模式的空间结构相对复杂。应用案例表明,WorldView-2图像和MEA-BP神经网络方法可以支持半干旱矿山倾倒恢复森林空间结构的有效评价。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号