...
首页> 外文期刊>Genome Biology >Evaluating nanopore sequencing data processing pipelines for structural variation identification
【24h】

Evaluating nanopore sequencing data processing pipelines for structural variation identification

机译:评估纳米孔序测序数据处理管道,用于结构变异识别

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Abstract BackgroundStructural variations (SVs) account for about 1% of the differences among human genomes and play a significant role in phenotypic variation and disease susceptibility. The emerging nanopore sequencing technology can generate long sequence reads and can potentially provide accurate SV identification. However, the tools for aligning long-read data and detecting SVs have not been thoroughly evaluated.ResultsUsing four nanopore datasets, including both empirical and simulated reads, we evaluate four alignment tools and three SV detection tools. We also evaluate the impact of sequencing depth on SV detection. Finally, we develop a machine learning approach to integrate call sets from multiple pipelines. Overall SV callers’ performance varies depending on the SV types. For an initial data assessment, we recommend using aligner minimap2 in combination with SV caller Sniffles because of their speed and relatively balanced performance. For detailed analysis, we recommend incorporating information from multiple call sets to improve the SV call performance.ConclusionsWe present a workflow for evaluating aligners and SV callers for nanopore sequencing data and approaches for integrating multiple call sets. Our results indicate that additional optimizations are needed to improve SV detection accuracy and sensitivity, and an integrated call set can provide enhanced performance. The nanopore technology is improving, and the sequencing community is likely to grow accordingly. In turn, better benchmark call sets will be available to more accurately assess the performance of available tools and facilitate further tool development.
机译:摘要背景结构变异(SVS)占人类基因组差异的约1%,在表型变异和疾病易感性中发挥着重要作用。新出现的纳米孔测序技术可以产生长序列读数,并且可能提供精确的SV识别。然而,用于对齐长读取数据和检测SV的工具尚未彻底评估。详细说明了四个纳米孔数据集,包括经验和模拟读数,我们评估了四个对准工具和三个SV检测工具。我们还评估测序深度对SV检测的影响。最后,我们开发了一种机器学习方法来集成来自多个管道的呼叫集。整体SV呼叫者的性能因SV类型而异。对于初始数据评估,我们建议使用对齐器Minimap2与SV呼叫者嗅闻组合,因为它们的速度和相对平衡的性能。有关详细分析,我们建议使用多个呼叫集的信息来提高SV呼叫性能.Conclusionswe呈现用于评估纳米Obers测序数据的对准器和SV呼叫者的工作流程,用于集成多个呼叫集的方法。我们的结果表明,需要额外的优化来提高SV检测精度和灵敏度,并且集成呼叫集可以提供增强的性能。纳米孔技术正在改善,测序界可能会相应地生长。反过来,更好的基准调用套装将以更准确地评估可用工具的性能并促进进一步的工具开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号