首页> 外文期刊>International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences >COMPARISON OF SEVERAL REMOTE SENSING IMAGE CLASSIFICATION METHODS BASED ON ENVI
【24h】

COMPARISON OF SEVERAL REMOTE SENSING IMAGE CLASSIFICATION METHODS BASED ON ENVI

机译:基于Envi的几种遥感图像分类方法的比较

获取原文

摘要

With the development of remote sensing technology and the increasing accuracy of remote sensing images, research on the accuracy of remote sensing classification is becoming more and more important. However, the classification accuracy obtained by different classification algorithms is also different. To this end, this paper selects the maximum likelihood method and the minimum distance method in the traditional supervised classification, the ISODATA method and the k-means algorithm in the unsupervised classification, and uses these four algorithms to classify the Landsat images in the research area of Heze City. The classification results are obtained and the results are evaluated. Then the four algorithms are compared separately, and the advantages and disadvantages of each algorithm are analyzed. The results show that the classification accuracy of the maximum likelihood method in the supervised classification is relatively high, and the classification accuracy is 82.3281%. The ISODATA algorithm in the supervised classification is superior to the K-means algorithm in clustering effect.
机译:随着遥感技术的发展和遥感图像的提高准确性,研究遥感分类的准确性的研究变得越来越重要。然而,不同分类算法获得的分类准确性也是不同的。为此,本文选择了传统监督分类中的最大似然方法和最小距离方法,ISOData方法和k-means算法在无监督的分类中,并使用这四种算法对研究区域中的Landsat图像进行分类菏泽市。获得分类结果并评估结果。然后单独比较四种算法,分析了每种算法的优点和缺点。结果表明,监督分类中最大似然方法的分类准确性相对较高,分类精度为82.3281%。监督分类中的ISODATA算法优于聚类效果中的K均值算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号