首页> 外文期刊>Advances in Mechanical Engineering >A dynamic adaptive particle swarm optimization and genetic algorithm for different constrained engineering design optimization problems:
【24h】

A dynamic adaptive particle swarm optimization and genetic algorithm for different constrained engineering design optimization problems:

机译:不同约束工程设计优化问题的动态自适应粒子群优化和遗传算法:

获取原文

摘要

A dynamic adaptive particle swarm optimization and genetic algorithm is presented to solve constrained engineering optimization problems. A dynamic adaptive inertia factor is introduced in the basic particle swarm optimization algorithm to balance the convergence rate and global optima search ability by adaptively adjusting searching velocity during search process. Genetic algorithm–related operators including a selection operator with time-varying selection probability, crossover operator, and n-point random mutation operator are incorporated in the particle swarm optimization algorithm to further exploit optimal solutions generated by the particle swarm optimization algorithm. These operators are used to diversify the swarm and prevent premature convergence. Tests on nine constrained mechanical engineering design optimization problems with different kinds of objective functions, constraints, and design variables in nature demonstrate the superiority of the dynamic adaptive particle swarm optimization an...
机译:提出了一种动态自适应粒子群优化和遗传算法来解决约束工程优化问题。在基本粒子群优化算法中引入了动态自适应惯性因子,通过在搜索过程中自适应调整搜索速度来平衡收敛速率和全局最佳搜索能力。遗传算法相关的运营商包括具有时变选择概率,交叉运算符和n点随机突变突变算子的选择操作员,其包含在粒子群优化算法中,以进一步利用粒子群优化算法产生的最佳解决方案。这些运营商用于多样化群体并防止过早收敛。对九种约束机械工程设计优化问题的测试与不同类型的客观函数,约束和设计变量的测试展示了动态自适应粒子群优化的优越性......

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号