首页> 外文期刊>Acta Mathematica Universitatis Comenianae >On Heilbronn triangle-type problems in higher dimensions
【24h】

On Heilbronn triangle-type problems in higher dimensions

机译:关于高等尺寸的海尔朗隆三角形问题

获取原文

摘要

The Heilbronn triangle problem is a classical geometrical problem that asks for a placement of $n$ points in the unit-square $[0,1]^2$, that maximizes the smallest area of a triangle formed by those points. This problem has natural generalizations to higher dimensions. For integers $k, d ge 2$ and a set $mathcal P$ of $n$ points in $[0,1]^d$, let $s = min{(k-1),d}$ and $V_k^{(d)}({mathcal P})$ be the minimum $s$-dimensional volume of the convex hull of $k$ points in $mathcal P$. Here, instead of considering the supremum of $V_k^{(d)}({mathcal P})$, we consider its average value, $vrg{Delta}_k^{(d)}(n)$, when the $n$ points in $mathcal P$ are chosen independently and uniformly at random in $[0,1]^d$. We prove that $vrg{Delta}_k^{(d)}(n) = Theta left(n^{rac{-k}{1+|d-k+1|}}ight)$, for every fixed $k, d ge 2$.
机译:Heilbronn三角形问题是一个经典的几何问题,要求在Unit-Square $ [0,1] ^ 2 $中的$ n $积分放置,最大化由这些点形成的三角形的最小区域。该问题具有更高尺寸的自然概括。对于Integers $ k,d ge 2 $和set $ mathcal p $ $ n $ points $ [0,1] ^ d $,let $ s = min {(k-1),d $和$ v_k ^ {(d)}({ mathcal p})$是$ mathcal p $的凸船部的最低$ s $ -dimimential卷。在这里,而不是考虑$ v_k ^ {(d)}({ mathcal p})$,我们考虑其平均值,$ avrg { delta} _k ^ {(d)}(n)$,当$ mathcal p $中的$ n $积分在$ [0,1] ^ d $时独立和均匀地选择。我们证明$ avrg { delta} _k ^ {(d)}(n)= left(n ^ { frac {-k} {1+ | d-k + 1 |}} 右) $,每次固定$ k,d ge 2 $。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号