首页> 外文期刊>Complexity >Efficient Parameters Estimation Method for the Separable Nonlinear Least Squares Problem
【24h】

Efficient Parameters Estimation Method for the Separable Nonlinear Least Squares Problem

机译:可分离非线性最小二乘问题的有效参数估计方法

获取原文

摘要

In this work, we combine the special structure of the separable nonlinear least squares problem with a variable projection algorithm based on singular value decomposition to separate linear and nonlinear parameters. Then, we propose finding the nonlinear parameters using the Levenberg–Marquart (LM) algorithm and either solve the linear parameters using the least squares method directly or by using an iteration method that corrects the characteristic values based on the L-curve, according to whether or not the nonlinear function coefficient matrix is ill posed. To prove the feasibility of the proposed method, we compared its performance on three examples with that of the LM method without parameter separation. The results show that (1) the parameter separation method reduces the number of iterations and improves computational efficiency by reducing the parameter dimensions and (2) when the coefficient matrix of the linear parameters is well-posed, using the least squares method to solve the fitting problem provides the highest fitting accuracy. When the coefficient matrix is ill posed, the method of correcting characteristic values based on the L-curve provides the most accurate solution to the fitting problem.
机译:在这项工作中,基于奇异值分解的可变投影算法将可分离非线性最小二乘问题的特殊结构与单个值分解相结合,以单独的线性和非线性参数。然后,我们使用Levenberg-Marquart(LM)算法找到非线性参数,并通过直接使用最小二乘法或使用迭代方法来解决基于L曲线的迭代方法来解决线性参数,根据是否或者不是非线性函数系数矩阵呈不适。为了证明所提出的方法的可行性,我们将其性能与LM方法的三个例子进行了比较,没有参数分离。结果表明,(1)参数分离方法通过减少线性参数的系数矩阵良好地提高的参数尺寸和(2)来降低迭代的数量并提高计算效率,使用最小二乘方法来解决拟合问题提供最高的拟合精度。当系数矩阵没有提出时,基于L曲线校正特征值的方法为拟合问题提供了最准确的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号