...
首页> 外文期刊>BMC Bioinformatics >Real-time data analysis for medical diagnosis using FPGA-accelerated neural networks
【24h】

Real-time data analysis for medical diagnosis using FPGA-accelerated neural networks

机译:使用FPGA加速神经网络的医学诊断实时数据分析

获取原文
           

摘要

Real-time analysis of patient data during medical procedures can provide vital diagnostic feedback that significantly improves chances of success. With sensors becoming increasingly fast, frameworks such as Deep Neural Networks are required to perform calculations within the strict timing constraints for real-time operation. However, traditional computing platforms responsible for running these algorithms incur a large overhead due to communication protocols, memory accesses, and static (often generic) architectures. In this work, we implement a low-latency Multi-Layer Perceptron (MLP) processor using Field Programmable Gate Arrays (FPGAs). Unlike CPUs and Graphics Processing Units (GPUs), our FPGA-based design can directly interface sensors, storage devices, display devices and even actuators, thus reducing the delays of data movement between ports and compute pipelines. Moreover, the compute pipelines themselves are tailored specifically to the application, improving resource utilization and reducing idle cycles. We demonstrate the effectiveness of our approach using mass-spectrometry data sets for real-time cancer detection. We demonstrate that correct parameter sizing, based on the application, can reduce latency by 20% on average. Furthermore, we show that in an application with tightly coupled data-path and latency constraints, having a large amount of computing resources can actually reduce performance. Using mass-spectrometry benchmarks, we show that our proposed FPGA design outperforms both CPU and GPU implementations, with an average speedup of 144x and 21x, respectively. In our work, we demonstrate the importance of application-specific optimizations in order to minimize latency and maximize resource utilization for MLP inference. By directly interfacing and processing sensor data with ultra-low latency, FPGAs can perform real-time analysis during procedures and provide diagnostic feedback that can be critical to achieving higher percentages of successful patient outcomes.
机译:医疗程序期间患者数据的实时分析可以提供重要的诊断反馈,从而显着提高了成功的机会。通过传感器变得越来越快,需要深度神经网络等框架在严格的时序约束中执行计算以进行实时操作。然而,由于通信协议,内存访问和静态(通常是通用)架构,负责运行这些算法的传统计算平台承担了大量的开销。在这项工作中,我们使用现场可编程门阵列(FPGA)来实现低延迟的多层Perceptron(MLP)处理器。与CPU和图形处理单元(GPU)不同,我们的FPGA的设计可以直接接口传感器,存储设备,显示设备甚至执行器,从而减少端口和计算管道之间的数据移动的延迟。此外,计算流水线本身专门针对应用程序定制,提高资源利用率和减少空闲周期。我们通过用于实时癌症检测的质谱数据集来证明我们的方法的有效性。我们证明了基于应用程序的正确参数大小,平均可以将延迟降低20%。此外,我们表明,在具有紧密耦合的数据路径和延迟约束的应用中,具有大量计算资源实际上可以降低性能。使用质量光谱测定基准,我们表明我们所提出的FPGA设计优于CPU和GPU实现,分别为144倍和21倍的平均速度。在我们的工作中,我们展示了特定于应用程序的优化的重要性,以便最小化延迟并最大限度地提高MLP推理的资源利用率。通过直接接地和处理具有超低延迟的传感器数据,FPGA可以在程序期间进行实时分析,并提供对实现更高百分比的成功患者结果至关重要的诊断反馈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号