...
首页> 外文期刊>Scientific reports. >Principles of proteome allocation are revealed using proteomic data and genome-scale models
【24h】

Principles of proteome allocation are revealed using proteomic data and genome-scale models

机译:使用蛋白质组学数据和基因组模型揭示了蛋白质组分配原理

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the "generalist" (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thus represents a generalist ME model reflecting both growth rate maximization and "hedging" against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σ(S). Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. This flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models.
机译:集成OMICS数据以优化或使特定于上下文的模型是基于约束的建模的活动场所。蛋白质组学现在通过质量覆盖95%的大肠杆菌蛋白质组。新陈代谢和大分子表达(ME)基因组规模模型(ME)计算与代谢和健身相关的蛋白质组分配。使用蛋白质组学数据,我们制定了ME模型中的关键蛋白质组扇区的分配约束。由此产生的校准模型有效地计算了不同增长环境的“通用”(野生型)大肠杆菌蛋白质组和表型。在15条生长条件下,生长速率和代谢助熔剂的预测误差分别为69%和14%。因此,扇区约束的ME模型代表了反映增长速率最大化和对不确定环境和应力的“对冲”的总体模型,如通过显着的富集对于一般应激响应Sigma因子σ的显着富集所示。最后,扇区限制代表了一般的形式主义,用于将OMICS数据从任何实验条件集成到基于约束的ME模型中。在此处证明,约束可以是细粒(个体蛋白质)或粗粒(功能相关的蛋白质基团)。这种灵活的形式主义提供了一种可接近的方法,用于缩小OMICS数据捕获的复杂性与系统级模型描述的蛋白质组分配的管理原理之间的差距。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号