首页> 美国卫生研究院文献>Scientific Reports >Principles of proteome allocation are revealed using proteomic data and genome-scale models
【2h】

Principles of proteome allocation are revealed using proteomic data and genome-scale models

机译:使用蛋白质组学数据和基因组规模模型揭示了蛋白质组分配的原理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thus represents a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σS. Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. This flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models.
机译:集成组学数据以完善或创建特定于上下文的模型是基于约束的建模的活跃领域。蛋白质组学目前覆盖了95%的大肠埃希氏菌蛋白质组。代谢和大分子表达(ME)的基因组规模模型计算与代谢和适应性相关的蛋白质组分配。利用蛋白质组学数据,我们为ME模型中的关键蛋白质组制定了分配约束。生成的校准模型有效地计算了跨多种生长环境的“一般”(野生型)大肠杆菌蛋白质组和表型。在15种生长条件下,生长速率和代谢通量的预测误差分别降低了69%和14%。因此,受扇区约束的ME模型代表了一种通用的ME模型,既反映了增长率最大化,又反映了对不确定环境和压力的“套期保值”,这表明这些部门对一般应力响应sigma因子σ S 。最后,部门约束代表了将来自任何实验条件的组学数据集成到基于约束的ME模型中的一般形式。如此处所示,约束可以是细粒度的(单个蛋白质)或粗粒度的(功能相关的蛋白质组)。这种灵活的形式主义为缩小组学数据捕获的复杂性与系统级模型描述的蛋白质组分配的控制原理之间的差距提供了一种可访问的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号