...
首页> 外文期刊>Scientific reports. >Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design
【24h】

Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design

机译:通过几何设计提高铂纳米颗粒对直接甲醇燃料电池阴极反应的甲醇耐受性

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Mastery over the structure of nanoparticles might be an effective way to enhance their performance for a given application. Herein we demonstrate the design of cage-bell nanostructures to enhance the methanol tolerance of platinum (Pt) nanoparticles while remaining their catalytic activity for oxygen reduction reaction. This strategy starts with the synthesis of core-shell-shell nanoparticles with Pt and silver (Ag) residing respectively in the core and inner shell regions, which are then agitated with saturated sodium chloride (NaCl) solution to eliminate the Ag component from the inner shell region, leading to the formation of bimetallic nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a metal shell with nano-channels, which exhibit superior methanol-tolerant property in catalyzing oxygen reduction reaction due to the different diffusion behaviour of methanol and oxygen in the porous metal shell of cage-bell structured nanoparticles. In particular, the use of remarkably inexpensive chemical agent (NaCl) to promote the formation of cage-bell structured particles containing a wide spectrum of metal shells highlights its engineering merit to produce highly selective electrocatalysts on a large scale for the cathode reaction of direct methanol fuel cells.
机译:掌握纳米颗粒的结构可能是增强其在给定应用中性能的有效方法。在这里,我们展示了笼形铃状纳米结构的设计,以增强铂(Pt)纳米颗粒的甲醇耐受性,同时保留其对氧还原反应的催化活性。该策略开始于合成核-壳-壳纳米颗粒,其中Pt和银(Ag)分别位于核和内壳区域,然后将它们与饱和氯化钠(NaCl)溶液搅拌,以从内部去除Ag成分壳区域,导致形成具有笼钟形结构的双金属纳米颗粒,定义为可移动的Pt核,其被具有纳米通道的金属壳包围,由于扩散不同,在催化氧还原反应中表现出优异的耐甲醇性能笼形结构的纳米颗粒的多孔金属壳中甲醇和氧气的化学行为特别是,使用非常便宜的化学试剂(NaCl)来促进形成包含多种金属壳的笼形结构的颗粒,突显了其工程优势,可大规模生产用于直接甲醇阴极反应的高选择性电催化剂燃料电池。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号